
Improving Botnet Detection and Timing using Two-Level Support
Vector Machines

Submitted For Blind Review
1st author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

1st author's E-mail address

Submitted For Blind Review
2nd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

2nd E-mail

ABSTRACT

Botnets have become a major threat to the Internet as large

armies of bot machines can be used to carry out a wide

range of attacks. We present a botnet detection mechanism

that uses two levels of support vector machines (SVMs) to

identify infected bot machines before they are used in an

attack. Our technique detects relationships in the network-

flows dynamically and determines if such relationships are

similar to those found within the command and control

traffic for known botnets. Two levels of SVMs enable

monitoring of large networks in real-time, requiring no

knowledge of the packet payload, and permit detecting bots

that use multiple communication protocols/frameworks.

The first level of SVMs examines network flows within short

overlapping time windows to detect suspect flows. The

second level SVMs monitor the suspect flows over a longer

duration to discern inter-flow and inter-channel

relationships that characterize botnet command and

control traffic. The basic framework based on detecting

similarities in relationships permit it to detect a variety of

botnets including those that use peer-to-peer protocols

and/or fast-flux techniques. An experimental evaluation

using representative botnet flows, superimposed on flow

information collected over the span of several days in a

medium scale campus network with over 1000 hosts, shows

that we realize detection accuracies of over 99.8% with

false positive rates of well under 1%.`

1. INTRODUCTION
Botnets pose a significant security threat to the Internet and

computing at large. Botnets consist of malware

compromised hosts that act as (ro)bots under the command

of one or more command and control (C&C) hosts which,

in turn, are directed by the attacker. The bots are used to

carry out illicit activities that result in information

compromise and/or activities that affect the performance

and usability of the systems [BCJ+ 09, ZYWW 11, SSPS

12]. Early botnets used the IRC framework and eventually

switched to peer-to-peer protocols. Recent botnets use fast

fluxing techniques that rapidly alter domain and/or IP

addresses of the command and control servers to evade the

detection mechanisms [ZYWW 11, SSPS 12].

An ideal botnet detection mechanism must exhibit the

following characteristics:

R1. It must handle different communication protocols and

communication frameworks used by botnets and provide a

high detection accuracy with very low false positive rates.

R2. It must not rely on specific details of the botnet

protocol and packet contents, as the packets involved may

be encrypted. Furthermore, the overhead of examining

each and every packet and matching it with expected

contents of packets in the command and control packet

traffic can be very significant.

R3. It must not be host-centric, as the overhead of a

sophisticated detection mechanism can easily inundate the

host in terms of both computing and performance

requirements.

R4. It must not rely on the use of specific IP addresses of

the C&C servers for detecting botnets whose startups can

be spread out over a long time period, as fast flux

techniques used in many recent botnets can rapidly alter

such addresses to disguise the C&C hosts [ZYWW 11].

R5. It must be able to detect botnets in real-time. Implicit

in this requirement is the necessity for the detection

mechanism to look only at reasonably sized data sets, as

botnet activities and phases can span several days.

The botnet detection mechanism presented in this paper and

dubbed as the Two-Level Botnet Detector (TLBD) meets

all of these requirements. Specifically, TLBD:

 Examines network flow data generated by network

routers [Cis 12], not relying on the knowledge of the

specific contents of the packets. This also makes

TLBD a network-centric solution.

 Uses two-levels of independent support vector

machine (SVMs) to identify botnet traffic. The SVMs

are trained on botnet flow patterns (as is typical of

most botnet detectors that have been proposed

recently). The first-level SVM examines flows within

short overlapping time windows, identifies suspect

flows, and feeds these to the second level SVM. The

second level SVM discerns inter-flow relationships

over a longer time span to detect botnet C&C channels.

 Obviates the need to rely on specific IP addresses of

C&C servers by focusing on the relationships between

aggregates of suspected flows over longer time spans

using a Relationship Graph.

 Keeps both the storage and performance requirements

of the detection mechanism manageable to realize real-

time detection capabilities. The two-level approach

directly enables both of these characteristics.

 Works with different communication protocols and

communication frameworks used by botnets.

Infected hosts serving as bots must repetitively

communicate with command and control servers (or other

bot peers in a peer-to-peer network) to receive instructions

and updates. This repetitive communication creates a flow

pattern that can be exploited to detect the infected machines

[YeRe 08]. Many existing botnet detection techniques

examine network flows in isolation and attempt to match

individual flows to models of known botnets. Individual

network flows, or even multiple flows from a short period

of time, are not sufficient to permit the accurate detection

of flow patterns for the botnet C&C communication.

Therefore these techniques suffer from high false positive

rates because they are unable to distinguish the botnet

traffic from the normal network traffic. This problem is

exacerbated by the fact that modern botnets attempt to

mimic normal network traffic to disguise themselves.

TLBD takes a different approach by identifying

relationships in network traffic flows caused by the botnets’

command and control channels. A network flow [Cis 12] is

a summary of a network connection between two machines.

It contains information such as: duration, number of bytes

sent, number of packets sent, etc. TLBD considers multiple

flows across multiple communication channels over an

extended period of time, detecting and tracking inter-flow

and inter-channel relationships. By accounting for the

interrelationship between communication channels, our

technique is able to differentiate the botnet flow channels

from normal network traffic. TLBD does not rely on

decoding the payload of individual packets, nor on deep

packet inspection, and can be used even if the payloads are

encrypted. Detecting relationships, or similarities, in the

network traffic between hosts allows our technique to work

against a variety of command and control channels

including peer-to-peer and botnets employing fast-flux

techniques.

In order to processes the flow data on a large network in

real-time, TLBD uses a two-level approach. The first level

detects relationships between network flows in a relatively

short time window. Consecutive short time windows

overlap. Flows are considered related if they have similar

features; these features are identified in Section 3.1. The

purpose of this level is to quickly identify flows that are

likely to be related and resemble botnet C&C flows and

filter out the majority of unrelated flows. The second-level

deals with channels that represent flows that share the

same source and destination IP addresses, the same

destination port and the same protocol. Specifically, the

2nd-level of TLBD tracks the communication channels

identified by the first-level over time to accurately identify

communication channels that are related and that match the

communication characteristics of known botnets. As the

communication channels are tracked, the 2nd–level

computes first and second order statics over a long time

period to characterize the channels (described in section

3.2.2). Communication channels are considered related if

their first and second order statistics are similar (see

Section 3.2.4). Only relationships that are persistent are

reported as potential botnet C&C channels. Botnets must

continuously contact their C&C server (or peer) to receive

instructions. Therefore relationships that exist for only a

short period of time are not likely to be caused by botnet

C&C communications. In effect, the first level of TLBD

identifies only the suspect flows that match botnet flows,

thus keeping the flow data to be examined by the second

level to manageable sizes. This has positive impact on both

the storage requirements of TLBD, as well as the botnet

detection time.

Both the first and second levels use Support Vector

Machines (SVMs) to differentiated related communications

channels from the normal botnet traffic. The SVMs are

trained on network traffic from known botnets and network

traffic collected for a campus network. This allows the

SVM to learn the subtle differences between the botnet

traffic and the normal network traffic. Detailed knowledge

of how the botnets operate is not required to train the

SVMs, thus allowing TLBD to be quickly adapted to new

botnets as they are discovered. The first level SVMs

identify relationships between network flows within a

relatively short time window. The second level SVMs

detect relationships between communication channels,

which are conglomerates of many flows collected over a

longer time interval.

The main contributions of this paper are as follows:

 We introduce a two level architecture to detect botnets

with high accuracy and low false positive rate while

keeping the data set used to track potential botnet

traffic to a manageable volume. Level 1 detects inter-

flow relationships to identify potentially suspicious

flows and rejects flows that are unlikely to be caused

by a botnet. Level 2 tracks and identifies inter-channel

relationships for channels corresponding to such flows

over long time intervals using a relationship graph.

 A dynamic relationship graph that efficiently tracks

relationships over time, enabling TLBD to differentiate

botnet traffic from normal network traffic by

characterizing the relationships over an extended

period of time.

 We show how the proposed two-level approach for

detecting botnets can be realized using two levels of

support vector machines (SVMs). The proposed

implementation keeps both the storage and

performance requirements of the detection mechanism

manageable to realize real-time detection capabilities.

 We identify and propose the use of first and second

order statistics of flows for classification that allows

the SVMs to differentiate botnet communications from

normal network traffic with very high detection

accuracy and extremely low false positive rates.

 We provide an experimental evaluation of our

technique on a large data set based on real network

traffic collected from a campus network, with real

botnet traffic data superimposed on the campus traffic

trace and demonstrate that the proposed two-level

botnet detection mechanism not only provides a very

high accuracy (>99.8%) but does so with extremely

low false positive rates (<0.2%). The proposed

technique is also shown to realize faster-than-real-time

performance.

 We compare our technique to a single level SVM using

the same data set.

2. Motivation and Approach
Differentiating network traffic generated by botnets from

normal network traffic is very difficult for traditional

classification techniques. To illustrate this, we trained a

SVM to identify botnet traffic from normal network traffic

collected from a campus network (see Section 5 for details

of the botnet traces and the normal traffic). The SVM was

able to detect the botnets, but generated a large number of

false positives. The number of false positives produced by

using a single SVM is shown in the column labeled “1

SVM False Positives” in Table 1. The data contained in a

single flow is not sufficient to differentiate botnet traffic

from normal network traffic.

To increase the information available for classification, we

explored tracking the evolution of the communication

channels represented by the flows in a relationship graph

similar to the DDBC algorithm proposed in [RoGh 12]. A

flow describes a connection between machines in the

network. We call a set of connections that share the same

source IP address, destination IP address, destination port,

and protocol a communication channel. The relationship

graph tracks the communication channels over time and

identifies communication channels that are persistently

related (see Section 3.2.1 for details).

Unfortunately, tracking the relationships between all

communication channels requires a large amount of

memory and processing resources, which makes it

infeasible to monitor the traffic from a large network in real

time. In order to detect relationships between a set of

communication channels, the channels must be pairwise

compared to each other. In the worst case, each flow

represents a unique communication channel and would

have to be compared to every other flow to build the

relationship graph. This results in a runtime complexity of

O(n2) where n is the number of flows collected.

To address this problem, we propose a two-level approach

where the first level acts as a filter to reduce the

computational complexity of the second level. The second

level uses the relation graph concept to track the

relationships between channels over a longer period of

time. The first level performs pairwise comparison

between flows collected during a relatively short time

period and uses a SVM to identify pairs of flows that are

likely to be the result of botnet C&C communications. The

second level uses these flows to build a relationship graph.

Limiting the time period considered by the first level

constrains the complexity of the problem, essentially

providing a filter for the second level, which combines the

data reported from the first level over a long period of time.

The column labeled “TLBD False Positive” in Table 1

shows that this technique is able to greatly reduce the

number of false positives when compared to using a single

SVM.

3. Two-Level Botnet Detector (TLBD)

Figure 1: Life Cycle of a Botnet

Data Set
Duration

(hrs)
Number of
Botnet IP

Number of
Nominal Ips

1 SVM False
Positives

TLBD False
Positives

HTTP-A 50 11 1,131,600 9,772 14

HTTP-B 50 6 1,131,472 5,217 124

HTTP-C 50 5 1,131,815 8,143 147

IRC-A 50 7 1,131,798 12,578 121

IRC-B 50 6 1,131,815 6,094 26

P2P-Storm 24 13 685,694 4,556 1,064

Table 1: Summary of test data sets and number of false positives produced by 1 SVM and TLBD

Our goal is to detect botnet infected machines on a large

network before they carry out an attack. In such a network,

we cannot assume that we will have access to all of the

machines on the network; so to be effective the botnet hosts

must be detected based on their network traffic. It is also

not feasible to inspect every packet on a large network in a

timely manner. To address this challenge, our technique is

based on NetFlow records [Cis 12] collected by the edge

routers in the network. The NetFlow records summarize

“connections” between two machines as data flows in each

direction. It contains information such as duration, number

of bytes send, number of packets sent, etc. The NetFlow

fields that are used by TLBD are described in Section 3.1

below.

The typical lifecycle of a botnet is depicted in Figure 1. In

the first phase, the host is initially infected with the botnet.

This may occur in a variety of manners including the

importation of computer viruses and malware. After the

machine is infected, the botnet software will repetitively

connect, or rally, with its Command and Control (C&C)

server (or with a peer in a peer-2-peer botnet) to receive

instructions (Phase 2). The C&C server may instruct the

bot to download an update (Phase 4) or to launch a

malicious activity such as sending spam email or

participating in a distributed denial of service attack

(Phase3) [SSPS 12].

TLBD monitors the network traffic and detects similarities

in the network traffic between different machines caused by

the bot machines making connections to their C&C servers

(or peers) in Phase 2. We expect the C&C traffic from

multiple hosts infected with the same botnet to share

similar characteristics such as the interval between

connections, duration of connections, and the amount of

data transferred during a connection. TLBD uses these

similarities to identify communication channels that are

likely to be caused by the same botnet malware. The

challenge is differentiating similarities caused by botnet

malware infections from similarities caused by normal

network services.

To address this problem TLBD tracks the relationships

between communication channels over time using a

dynamically evolving Relationship Graph where

communications channels are the nodes and relationships

between the commutation channels are the edges.

Relationships in the graph are monitored for persistence

and compared against expected relationships caused by

botnets, learned by observing known botnets. The

machines associated with persistent relationships that

match the botnet relationships are reported as potentially

infected machines. Persistence is a key attribute of a

relationship caused by botnet C&C communications.

Botnet malware must repeatedly contact its C&C server (or

peer) to receive instructions. If it fails to do this, the

infected machine is essentially useless to botnet because it

cannot be controls. Therefore, if a relationship does not

persist over time it is unlikely that it was caused by botnet

C&C communication. If it is determined that a relationship

is not persistent, the edge associated with it is pruned from

the relationship graph. This pruning process helps control

Figure 2: TLBD is organized into two levels. Level-1 is responsible for quickly detecting local relationships while

Level-2 refines the relationships overtime, accurately detecting persistent relationships

the size of the relationship, which in turn controls the

memory and computational resource use.

In order to efficiently detect persistent relationships in the

network traffic between machines, we propose a two level

approach with the following functions at each level:

 Level-1 – Local Relationship Detection

 Level-2 – Persistent Relationship Detection

Level-1 examines a set of NetFlow records within a

relatively small time window, and finds NetFlow records

that are related. A NetFlow represents a single

communication, or connection, between two machines on

the network. NetfFow are consider related if they have

similar characteristics such has duration, number of packets

sent, and number of bytes sent, etc (see section 3.1 for

details). This level serves as a filter to the rest of system

by rejecting the majority of unrelated flows. Detecting

relationships between individual flows is not sufficient for

accurately differentiating relationships caused by botnet

infected machines and normal network traffic. It is

common for botnets to attempt to disguise their

communication channels by mimicking normal network

traffic or by delaying steps within Phase 2. In order to

identify the botnet communication channels in the midst of

normal network traffic, multiple flows across multiple

communications channels must be observed over an

extended period of time. Level-2 of TLBD does this.

Level-2 builds an evolving Relationship Graph based on

the local relationships detected by Level-1. The

Relationship Graph is used to monitor the relationships

(edges) between communication channels (nodes) over

time. Communication channels represent a series of

communications, or connections, between two machines on

the network that occur of a period of time. Pairs of related

NetFlow detected by level-1 are used to update the nodes of

the graph. The nodes of the graph collect first and second

order statistics about the communication channels such as

the mean number of flows per hour, mean and variance of

the number of packets per flow, mean and variance of the

number of bytes per flow, etc. (see section 3.2 for details).

The first order statistics estimate the average characteristics

of the communication channel and the second order statistic

are used to judge consistency of these characteristics. The

edges in the graph are periodically examined to find

persistent relationships that match relationships seen for

known botnets. We expect that communication channels

associated with the same botnet to have very similar first

and second order statistics because the communication over

these channels is caused by the same malware. Likewise,

we expect the first and second order statistics of a channel

caused by a known botnet to be very similar to the statistics

generated by training a model on similar botnet traffic. The

machines associated with communication channels that are

persistently related and match a botnet model are reported

as potentially infected machines. Figure 2 illustrates how

our botnet detection technique is organized.

3.1 Level-1: Local Relationship Detection
The goal of Level-1 is to find potentially related flows, and

filter out flows that are unlikely to be related, using a

stream of network traffic collected by a router at the edge

of the monitored network as input. As depicted in Figure 2,

the Level-1 algorithm is subdivided into a NetFlow

Creator, and a set of Relationship Analyzers. The NetfFow

collector is responsible for monitoring the network traffic

coming and leaving the monitored network, and creating

NetFlow records [Cis 12] that summarize the traffic. A

NetFlow record represents a “connection” between two

machines. All packets associated with a NetFlow record

contain the same source IP address, destination IP address,

source port, destination port, and protocol. A NetFlow

record contains fields that describe the data that was sent

over the connections. We are concerned with the following

fields from the NetFlow record:

 Start Time

 End Time

 Duration

 Protocol

 Number of Packets Sent

 Number of Bytes Sent

These fields describe the interaction between the machines.

Start and end time will be used to identify repetitive

patterns in the traffic between two machine over time. As

the botnets are repeatedly querying their C&C servers we

expect to see similarities in duration, number of packets

sent, and number of bytes sent between netflows that are a

result of this communication. These similarities will form

the basis of the inter-flow realtionships. The Netflow

Creator is implemented in the border routers of the

network. This step is not the focus of this work.

The NetFlow produced by the NetFlow Collector are

processed by the Relationship Analyzers. A relationship

analyzer is responsible for detecting potentially related

NetFlow from a relatively short period of time. Only short

periods of time are analyzed to reduce the computational

complexity of comparing the NetFlow records collected

during the time period. As depicted in Figure 2, a set of

Relationship Analyzer can be used to process different time

periods in parallel. The length of the time interval

processed by a Relationship Analyzer is a tradeoff between

computational complexity and the probability of observing

related NetFlow in the time window. Increasing the size of

the time window increases the computations required, but

also increases the probability of observing two or more

related flows within the time window. The time windows

observed by the Relationship Analyzers are not required to

all be the same length. If it is determined that a large time

window needs to be observed, a Relationship Analyzer can

process the data in parallel with the Relationship Analyzers

that are processing the smaller time windows. The

Relationship Analyzers use a white list of known hosts to

filter out network traffic to and from hosts that are unlikely

to be part of a botnet. We built this white list from the top

10000 alexa (http://www.alexa.com/) domains and IP

addresses hosting key campus network services.

To detect potential relationships between NetFlow, each of

the Relationship Analyzers uses a Support Vector Machine

(SVM) to compare the NetFlow records collected during a

time window. Minimizing the number of both false

positive and false negative errors is critical. False positives

increase the workload of Level 2 and false negatives are

missed opportunities to identify the botnets. SVMs were

selected because they minimize both false positives and

false negatives. The SVM classifies a pair of NetFlow

records as either related or unrelated based on the following

features:

1. Protocol

2.
 –

3.

4.

5.

These features were selected to measure the similarity

between the flows. We expect that flows created by the

same botnet malware will use the same protocol and have

similar characteristics such as duration, number of packets,

number of bytes, and bytes per packet. We selected these

characteristics because they measure the duration of the

flow and the rate of date transferred without having to

decode the payload of the packets. Features 2-5 are a

normalized difference between characteristics of the flows

being compared. We expect the values of these features to

be small if the flows are related. If the two flows are from

a known botnet, we also expect the values of these features

to be similar to a model learned from training on similar

botnet data. Related records are passed through to Level-2

while unrelated records are discarded.

Each Relationship Analyzer produces a set of local

relationships that are passed to Level-2. A local

relationship consists of a pair of NetFlow records. Based

on our experiments, Level-1 is able to reliably detect the

related NetFlow records, but does suffer from a relatively

high number of false positives. We believe that

information contained in a single NetFlow record is not

sufficient to accurately differentiate the botnet NetFlow

records from the NetFlow records generated by normal

network traffic. Level-2 of our technique considers

multiple flows across multiple communications channels

over an extended time duration. This additional

information allows Level-2 to reduce the number of false

positives reported by Level-1.

3.2 Level-2: Persistent Relationship Detection
The goal of Level-2 is to accurately identify botnet infected

machines on the network that is being monitored. To

overcome the false positive problem faced by Level-1,

Level-2 is based around a Relationship Graph that tracks

and monitors relationships among communication channels

between machines over an extended period of time. This

additional information allows Level-2 to differentiate the

botnet communication channels from the normal network

traffic.

3.2.1 Relationship Graph
As shown in Figure 2, local relationships detected by the

Relationship Analyzers are passed to the Relationship

Maintenance phase, which uses the relationships to update

the Relationship Graph. The Relationship Graph is a

weighted graph where the nodes represent communication

channels between pairs of machines and the edges track

relationships between the communication channels over

time. The purpose of the relationship graph is to detect

persistent relationships between communication channels.

Each node in the relationship graph is uniquely identified

with the following attributes:

 Source IP Address

 Destination IP Address

 Destination Port

 Protocol

Each node collects the following statistics about the

communication that it represents:

 Mean Number of NetFlow per Hour

 Mean Packets per NetFlow

 Variance of the Packets per NetFlow

 Mean Bytes per Packet

 Variance of the Bytes per Packet

 Mean Duration of NetFlows

 Variance of the Duration of NetFlows

 Mean Time Between NetFlows

 Variance of the Time Between NetFlows

3.2.2 First-Order and Second-Order Statistics
Intuitively, periodic C&C traffic patterns can be detected

using first order statistics (mean). However, to identify

randomly initiated C&C traffic the first order statistics are

not sufficient. We thus added second order statistics,

specifically variance, to characterize the distribution of the

network traffic over the channels to improve the overall

detection accuracy of TLBD. Estimating the distribution of

network traffic over the channels allows us to detect both

periodic and randomly initiated C&C traffic.

These statistics are updated based on the local relationships

detected by the Level-1 Relationship Analyzers. The

NetFlow records in the local relationships are used to

update the statistics of the corresponding nodes in the

Relationship Graph, creating a summary NetFlow that

characterizes the communication channel over an extended

time. If a corresponding node does not exist in the

Relationship Graph, a new node is created. The nodes

corresponding to the NetFlow that are contained in a local

relationship are connected via an edge in the graph. Once a

node is added to the Relationship Graph, the Level-1

Relationship Analyzers allow NetFlow records related to

http://www.alexa.com/

the node to pass through, even if a related record is not

found in the time window. This ensures that once a

communication channel is suspected of being caused by a

botnet, it is characterized with as much data as possible.

This is depicted as the dashed line labeled “Existing

Relationships” in Figure 2.

3.2.3 Relationship Graph Example
Figure 3 illustrates how the Relationship Graph captures

the structure of botnets over three time steps. The top half

of the figure shows a botnet and a normal network service

(web server, IRC server) that are active in the network

being monitored. The arrows represent the communication

channels between the machines on the network and the

servers. The bottom half of the figure shows the

Relationship Graph that is generated by TLBD. Each node

in the Relationship Graph corresponds to a communication

channel in the network and the edges represent

relationships between the communication channels. The

weights on the edges represent the strength of the relations.

A high relationship strength indicates that TLBD is

confident that the relationship is persistent and is the result

of botnet activity. The relationship strengths are computed

at each time step by the level-2 SVM.

At the first time step (Figure 3 - T1), the relationship graph

contains edges that represent the botnet relationships

{{a,b},{a,c},{b,c}} the network service relationships

{{d,e},{d,f},{e,f}} and false relationships

{{b,e},{c,e},{b,d}}. The relationship strengths of all edges

are low at this point indicated the TLBD is not confident in

any of the relationships.

At the second time step (Figure 3 - T2), the relationship

strengths of botnet relationships {{a,b},{a,c},{b,c}}

increase. The additional data collected about the

communication channels has given TLBD more confidence

that these relationships are persistent and caused by a

botnet. In addition the strengths of the false relationships

{{b,e},{c,e},{b,d}} have decreased.

Finally at the third time step (Figure 3 - T3), the botnet

relationships have a very high relationship strength and the

strength of the false relationships were reduced to 0, and

the edges were pruned from the graph. During this time an

additional machine has started communicating with the

network service and has been added to the relationship

graph (node g). The relationships caused by the network

services are maintained in the relationship graph as edges

{{d,e},{d,f},{b,g},{e,f},{e,g},{f,g}}. These relationships

have a low relationship strength indicating that TLBD is

not confident that they are the result of a botnet.

Communication channels c and d are from the same host to

the botnet C&C server and the network service

respectively. This represents a situation where the user of

the host machine is unaware of the botnet infection and

continues to use the machine normally while the botnet

malware is communicating with its C&C server. TLBD

works at the communication channel level and tracks both

communication channels separately (nodes c and d in the

relationship graph) even thought they originated from the

same host.

3.2.4 Tracking Evolving Relationships
Periodically, the relationship graph is searched for

persistent relationships that are likely to be caused by

botnet command and control channels. A SVM is used to

identify edges in the relationship graph that represent

botnet activity. When an edge is detected that represents a

botnet relationship, the source IP addresses from the

associated nodes are reported as possible botnet nodes.

There is one SVM per known botnet in each layer. Section

5.3.1 describes how the parameters for the SVMs are

selected and how the SVMs are trained. In order to

evaluate an edge using the SMV, an input vector must be

generated that represents the relationship. We use a 13-

Figure 3 The evolution of a Relationship Graph over three time periods. The top half of the image shows the network

that is being monitored and bottom half show the resulting Relationship Graph.

element input vector based on the statics collected by the

nodes in the graph:

1. TCP: 1 if nodeA.protocol = nodeB.protocal = TCP,

otherwise -1

2. UDP: 1 if nodeA.protocol = nodeB.protocal = UDP

otherwise -1

3. ICMP: 1 if nodeA.protocol = nodeB.protocal =

ICMP otherwise -1

4. OTHER Protocol : 1 if nodeA.protocol =

nodeB.protocal <> TCP || UDP || ICMP otherwise -1

5. Delta Mean Netflows per Hour:

|nodeA.meanNetflowPerHour -

nodeB.meanNetflowPerHour|

6. Delta Mean Packets per Flow:

|nodeA.meanPktsPerFlow - nodeB.meanPktsPerFlow|

7. Delta Variance Packet per Flow:

|nodeA.varPktsPerFlow - nodeB.varPktsPerFlow|

8. Delta Mean Bytes per Packet:

|nodeA.meanBytesPerPkt - nodeB.meanBytesPerPkt|

9. Delta Variance Bytes per Packet:

|nodeA.varBytesPerPkt - nodeB.varBytesPerPkt|

10. Delta Mean Netflow Duration:

|nodeA.meanFlowDuration - nodeB.

meanFlowDuration |

11. Variance Netflow Duration:

|nodeA.varFlowDuration - nodeB. varFlowDuration |

12. Delta Mean Time Between Netflows:

|nodeA.meanTimBetweenFlows - nodeB.

meanTimeBetweenFlows |

13. Delta Variance Time Between Netflows:

|nodeA.varTimBetweenFlows - nodeB.

varTimeBetweenFlows |

The first four elements of the vector are associated with the

protocol used by the communication channel. Channels

that use different protocols are not considered related. The

remaining 9 elements are the absolute values of the

differences between the statistics computed by the nodes in

the Relationship Graph. The difference is used because it

provides an estimate of the similarity between the channels

that are being compared. We expect that channels that are

the result of botnet C&C traffic will have similar statistics

and therefore the difference between their means and

variances will be close to 0. On the other hand, we expect

the differences to be significantly higher when comparing a

pair of unrelated channels. This will allow the SVM to

differentiate pairs of related channels from pairs of

channels that are not related.

The edges of the Relationship Graph are periodically

evaluated by computing the above 13-element vector for

each edge, and using the Level-2 SVM to evaluate the

Relationship Strength of the inter-channel relationship

represented by the edge. The Relationship Strength is a

measure of how confident TLBD is that the edge represents

a botnet relationship and is in the range of [0,1], with 0

indicating that the relationship is the result of normal

network traffic and 1 indicating that the relationship

definitely is the result of botnet communications. A

Relationship Strength Threshold is used to specify the

confidence level required to classify a relationship as a

botnet detection. In our experiments the Relationship

Strength Threshold was set to 0.5. Edges that have a low

Relationship Strength, less than the Relationship Strength

Threshold, for a long period of time are pruned from the

graph. Nodes that have no edges are also pruned.

By using summary NetFlow information and considering

the interrelationships between the communication channels,

the Level-2 SVMs are able to distinguish the botnet

communication channels from the normal network traffic.

The Level-1 portion of the system is needed to filter out the

majority of normal network traffic and control the growth

of the relationship graph.

4. Related Work
The body of work on botnet detection techniques is both

rich and quite varied. Recent surveys on botnet

technologies and detection techniques include [BCJ+ 09,

ZYWW 11, SSPS 12].

Honeynets [Prov 04, BHKW 08, Hon 13] are the earliest

examples of widely-deployed mechanisms within networks

for learning about the characteristics of botnets for devising

detection techniques and disinfection of compromised

hosts. Essentially, honeynets employ decoy hosts within a

network that are permitted to be infected with botnet

malware, so that characteristics of new botnets can be

learned.

Many of the earlier botnet detection techniques used

specific knowledge of the botnet protocols as well as

knowledge of the packet payloads used to download

malicious binaries from the C&C server. These so-called

signature-based detection techniques require the ability to

do deep packet inspection and are exemplified by Rishi

[GoHo 07], the work of [KKHS 07] and [WBH+ 09]. A

limitation of the signature-based approaches is in their need

to have specific knowledge about the malware from C&C

servers, preempting them from adapting quickly to newly

deployed and potentially unknown botnets. The signature

database used by these techniques also grows in size even

with small variations introduced to previously seen botnets.

Signature based schemes are also not capable of dealing

with encrypted packet payloads.

The class of anomaly based botnet detection techniques do

not require protocol-specific and content-specific

knowledge and instead focus on detecting unusual traffic

patterns characterized by high traffic volume, packet

latencies, correlated host behavior, anomalous host

responses and the like. These techniques can also use

traffic patterns of known botnets to speed up the detection

process and as such are capable of quickly learning the

characteristics of new botnets without the need for any

knowledge of the contents of the botnet-related packets.

The bulk of the newer techniques for botnet detection are

anomaly-based and many use NetFlow [Cis 12]

information captured from routers in the course of routine

monitoring.

Anomaly-based techniques, largely, are network-centric, as

they are deployed at the network level. Techniques in this

class focus on:

 IRC traffic for detecting IRC-based botnets, such as

the work of [CJM 05, BiSi 06, SWLL 06, LuGh 08].

 DNS traffic for detecting bot connections to C&C

hosts, such as the work of [DZL 06, RFD 06, ViBr 08,

CLK 09].

 SMTP traffic to detect bots from their memberships in

email spam lists, such as the work of [ZDS+ 08,

JMGK 09].

 P2P traffic used by many newer botnets, such as the

work of [ChDa 09, DFNM 08, HSD+ 08, LiCh 10,

NMH+ 10, ZPL+ 11].

Some anomaly-based detection techniques are also capable

of dealing with multiple communication protocols and

frameworks used by the botnets and many specific

techniques within this subclass use machine learning

concepts (as detailed later). Examples of botnet detection

techniques that deal with multiple protocols include

Bothunter [GPY+ 07], Botsniffer [GZL 08] and Botminer

[GPZL 08] and the work of [GCT+ 09, WBH+ 09].

A significant and relatively recent research direction in

botnet detection has been centered on the use of machine

learning techniques. We focus on these efforts, as the

technique proposed here, TLBD, falls into this subclass of

solutions.

Botminer [GPZL 08] is an anomaly-based botnet detector

that uses data clustering techniques to classify traffic

between C&C hosts and botnets, assuming that all of the

bots communicate with the C&C hosts in a similar fashion

and exhibit similar malicious activities. Botminer uses the

notion of aggregated flows for multi-layered clustering and

is pioneering in not requiring specific knowledge of

malware binaries, C&C protocols, C&C host addresses or

botnet signatures. As observed in [GPZL 08], Botminer is

not capable of providing real-time detection in high-speed

networks, although it realizes very high detection

accuracies with extremely low false positive rates.

Although some potential extensions to deal with evasive

botnets are discussed in [GPZL 08], it is unclear as to how

well Botminer will perform, both in terms of accuracy and

detection time, when the botnet uses fast flux and other

techniques to evade detection.

The DISCLOSURE system proposed in [BBR+ 12] uses

random forest classifiers to distinguish C&C traffic from

normal traffic, assuming no specific knowledge of specific

C&C protocols to detect C&C servers. A variety of

external reputation rankings are then used to reduce the

number of false positives. DISCLOSURE is able to detect

botnets with false positive rates of 6% to 20% to detect

close to 90% of the botnets.

In [LWLS 06], machine learning techniques are evaluated

and used for detecting C&C traffic for IRC-based botnets,

using a two-staged approach similar to TLBD. The first

stage is used to distinguish between IRC and non-IRC

traffic, serving as a pre-filter to the second stage, which

distinguishes botnet C&C traffic from legitimate IRC

traffic. Average false positive rates in the range 12% to

14% are achieved by this technique. In [ChDa 09], the

authors use behavioral clustering, followed by statistical

tests to identify anomalous traffic that characterize C&C

communication patterns of botnets that use peer-to-peer

communication.

Support vector machines (SVMs) have been used recently

to classify botnet traffic patterns and botnet detection.

Some examples of these techniques are now described.

Five machine-learning techniques (including SVM) are

evaluated and used in [STG+ 11] for detecting peer-to-peer

botnets in the C&C phase before the onset of any attack. A

total of 17 features related to network flows and host

communication patterns are used in this technique to realize

error rates of 6% to 20%, with support vector machines

providing the best error rate (6%).

In [KS 07], a support vector machine is used to detect C&C

sessions using packet histogram data, achieving 95%

accuracy on test data sets. In [CRT 11], an online least

square support vector machine is used to adapt to the

changes in the feature set needed for the classifier as

newly-infected machines assume botnet-specific roles and

also to changes in the class labels of the training data set.

[CRT 11] uses an intrusion detection system to mark

suspect flows initially before using the SVM. The main

contribution of [CRT 11] is a methodology that adapts to

the feature set (including suspect IP addresses) as they

change over time. A key assumption of the technique of

[CRT 11] is that machines can be identified as bots by

examining the server addresses they visit. This assumption

is unrealistic for botnets that use fast flux techniques to

change IP addresses rapidly.

[YeRe 08] describes a malware detection algorithm that

finds communication “aggregates” based on network-flow

data. They aggregate the network traffic 3 ways: common

destination, similar payload, and common internal-host

platform. Suspect communications are found by finding

the intersection of the 3 aggregates. The 3 aggregate

approach is similar to the two-level approach of TLBD, but

differs in several key areas. The technique proposed in

[YeRe 08] depends on finding common destinations. It is

not clear that this approach would be able to find P2P

botnets. They also relay on examining the payload of the

traffic, which limits their effectiveness when encryption is

used. There are also several constants that need to be set

and it is not clear how to select their values.

The approach presented in this paper uses a 2-layered

technique to detect botnets, using SVMs at each level and

does not require specific internal details of botnets and is

capable of dealing with botnets that use fast flux techniques

for evading detection. The SVMs are trained to quickly

learn the traffic patterns of botnets and do not require the

use of internal features of botnet traffic or IP addresses and

the like. The first layer detects inter-flow relationships

within a short time window and the second layer detects

relationships among communications channels using

aggregates of flows detected by the first SVM layer over a

longer time duration. The two SVM layers thus identify

botnet flows and the collective communication pattern of

such flows, regardless of whether the botnets use a peer-to-

peer architecture or not. Thus, the proposed technique is

much more universal compared to many of the machine

learning based techniques. The universality of our

proposed approach is thus like Botminer [GPLZ 08] but

unlike Botminer, our technique works in real-time, deals

with fast-flux techniques and does not require the tracking

of specific malicious behavior. The proposed detection

system realizes false positive rates of less than 1% with a

high detection accuracy (over 98%), rivaling or exceeding

the reported performance of the machine learning based

techniques discussed earlier. TLBD also meets all of the

requirements of an ideal botnet detector, as enumerated in

Section 1.

5. Experimental Results
The goal of the experiments presented in this section is to

determine if TLBD is able to differentiate botnet traffic

from normal network serveries and activity. We assessed

the performance of TLBD using network traffic collected

from six different botnets overlaid on network traffic

collected from our campus network at included a rich

variety of network traffic. The campus network contains a

broad range of applications including web traffic, streaming

video services, chat services, SW update service, etc. We

present the performance of both the Level-1 SVMs and

Level-2 SVMs independently and then show the

performance of the entire TLBD system. For comparison

purposes, we evaluated the performance of a single SVM

on the same data sets.

5.1 Data Sets
We used the same 6 botnet data sets that were used in

[ZPG+ 11] to evaluate the performance of TLBD. This

data set was selected to permit our results to be compared

with the results of others, including [ZPG+ 11]. The

authors were able to share with us 3 HTTP based botnets:

HTTP-A, HTTP-B, and HTTP-C; 2 IRC based botnets:

IRC-A, IRC-B; and 1 Peer-To-Peer based botnet: P2P-

Storm. They were not able to share a second P2P based

botnet (P2P-Waldec) or the network data collected from

their campus network due to privacy considerations.

The IRC-A network traffic was collected by running

“TR/Agent.1199508.A” and HTTP-A data was collected by

running “Swizzor.gen.C.” The botnet emulation

framework Rubot was used to generate IRC-B, HTTP-B,

and HTTP-C. HTTP-B contacts its C&C server

periodically at 10 minute intervals, and HTTP-C contacts

its C&C server at a randomly generate interval between 0-

10 minutes. The P2P-Strom data was generated by running

the Storm botnet in a controlled environment [ZPG+ 11].

In addition to botnet network traffic, we configured the

router (Cisco Catalyst 6153) at the edge of our campus

network to collect NetFlow records for one week. The

campus network traffic was collected from a university

campus network with over 1,000 hosts. The data collected

contains approximately 1,500 NetFlow per second. Over a

24 periods we typically encountered approximately

900,000 unique IP addresses.

We used softflowd and nfdump to generate NetFlow records

from the botnet network data. We then overlaid the botnet

NetFlow records on the NetFlow records collected from the

campus network to create 6 datasets that contain NetFlow

records from both botnets and normal network traffic.

5.2 Training Data vs Test Data
TLBD uses SVMs to detect related NetFlow. Like any

machine learning system, the SVMs have to be trained on

data representative of what they have to detect. To

Figure 5 Precision and Recall of the Level-2 SVMs on

the botnet data sets

Figure 5 Precision and Recall of the Level-1 SVMs on

the Botnet data sets.

generate a set of training data we first merged the botnet

traces and the network traces from the campus network by

shifting the time and the IP-address range of the botnet

traces into the range of the traces collected from the

campus network. We then split this combined data set into

two halves. One half was used to do parameter estimation

and training and the other half was used to evaluate the

systems. Thus the data sets used for training and

evaluation are disjoint. The training data set was sampled

so that the number of botnet traces was equal to the number

of campus network traffic traces. This sampling was done

because there are far more traces from the campus network

data than botnet traces. Balancing the training set prevents

the SVMs from weighing the campus network data more

than the botnet data. The test data set for evaluating TLBD

was not sampled.

5.3 Level-1 Local Relationship Detection
In order to evaluate the performance of the Level-1

Relationship Analyzer we trained 6 SVMs, one per known

botnet. For each botnet, we split the associated data set

into a training set and test set. For both the training and

test data, we generated a set of labeled, local relationship

examples. To do this we ran the Level-1 process with a

time window of 15-minutes and each pair of NetFlow

records in a time window were classified as related if both

NetFlow were from the botnet data, and unrelated if at least

one of the NetFlow were from the normal network traffic.

The normal network traffic accounts for the vast majority

of NetFlow records in the data set. Because it is very

important that the Level-1 SVM detect the related NetFlow

records, at the possible expense of increasing false

positives, we balanced the training set so it contained 50%

related examples, and 50% unrelated examples.

5.3.1 Parameter Selection
Before we could train the SVM we had to first select a set

of parameters to use. We chose the Radial Bias Function

(RBF) as the kernel function based on its small number of

parameters and its performance as mentioned in [RoGh 12].

The RBF function has only 1 parameter GAMMA and the

SVM has another parameter C that controls the softness of

decision boundary [CoVa 95]. To select values for C and

GAMMA, we performed a grid search over possible values

using 5-fold cross validations and selected the parameter

that produced the best results. The SVM was then trained

over the entire training data set using the selected

parameters. We then evaluated the performance of the

SVM using the test data set.

5.3.2 Level-1 Performance
Figure 5 shows the Precision and Recall of the Level-1

SVMs on the 6 data sets. Precision and Recall are defines

as:

Precision =

Recall =

Precision is a measure of how well the detected

relationships represent botnets. Recall measures how many

of the true relationships were detected. The precision and

recall measures are very good across all of the data sets.

Despite this, the number of false positives is still quite high.

This is not captured by precision and recall because the

number of normal network traffic examples far exceeds the

number of botnet traffic examples in the test set. In this

case, even a low false positive rate (high precision) can

lead to a large number of false positives when compared to

the number of true botnets. For example, the Level-1 SVM

for HTTP-B achieved a False Positive Rate of 0.0018, but

this consisted of 2575 false positives compared to only 7

true positives. This high number of false positives is what

dictates the need to the second Level of our technique.

5.4 Level-2 Persistent Relationship Detection
We took a similar approach to training and evaluating the

performance of the Level-2 SVMs. Because Level-2 uses

the results of Level-1 as input, we had to simulate Level-1

in order to generate the training data for Level-2. To do

this, we ran Level-1 as described above, but instead of

using the SVMs to classify pairs of NetFlow Records as

related or unrelated, we classified all pairs as related. This

represents the worse case performance, as far as workload,

and gives us the most data to use to train the Level-2

SVMs. These relationships were used to update the

relationship graph. After the relationships from each time

window were processed, the edges in the Relationship

Graph were used to generate a labeled training set.

Examples were labeled as a true relationship if both nodes

associated with an edge were the result of botnet

communications. Likewise examples were labeled as

unrelated if at least one of the nodes was the result of

normal network traffic. The same parameter selection,

training, and test process that was used for the Level-1

SVM in Section 5.3.1 was used for the Level-2 SVM.

Figure 5 shows the performace of the Level-2 SVM. The

precision and recall results are very good, despite not

having the benefit of the Level-1 SVM.

5.5 2-Level Botnet Detection
After training both SVMs, we were prepared to test the

end-to-end system. Each data set was processed by the

system independently. The goal of the system is to identify

the botnet infected machines on the network. To evaluate

the performance of TLBD we measured the Accuracy and

False Positive rate of the IP addresses report as being

infected. Accuracy is defined as the number of correctly

classified IP address (true positives + true negatives)

divided by the total number of IP address observed on the

network. The False Positive Rate (FPR) is defined as the

number of false positives divided by the total number of IP

address observed on the network. Precision and Recall

were used to evaluate the individual SVMs because of their

wide use in the machine learning community and we were

evaluating the SVM based on the labeled training data at

the individual relationship level. We believe that Accuracy

and False Positive Rate are more illustrative when

evaluating the performance of the system as a whole.

For comparison purposes, a single SVM was trained to

identify individual NetFlow caused by botnets. The

following features were used by this SVM:

1. Protocol

2. Duration

3. Number of Packets

4. Number of Bytes

5. Mean Bytes Per Packet

The parameters were selected using the same process as

described in Section 5.3.1. This SVM was trained using

the same training sets that were used to train TLBD.

Figure 6 shows the Accuracy and False Positive Rate

achieved by TLBD and the single SVM over time. Note

that the Left vertical axis shows the scale for Accuracy and

the right vertical axis shows the scale for False Positive

Rate. The horizontal axis represents time in seconds from

the beginning of the data set.

Overall TLBD performed very well on all data sets. We

show the performance of TLBD over time, because we are

monitoring the communication channels over time and

expect the performance to improve as the TLBD collects

more data. In general, this hypothesis is supported by the

Figure 6: 1 SVM and TLBD Accuracy and False Positive Rate on the 6 botnet data sets. Accuracy is shown on the

left vertical axis and False Positive Rate is shown on the right vertical axis. The horizontal axis shows time in

seconds.

A B

C D

E F

results. It is important to note that the Accuracy and False

Positive Rate curves are almost mirrors of each other. This

shows that the False Positives are the main driver of errors

in the system. When we examined the data closely we

found that the Level-2 SVM was able to reduce the Level-1

false positives by an order of magnitude. Even this

improvement still produces a relatively larger number of

false positives when compared to the number of actual

botnet infected machines. For example, in the HTTP-B

data set, our technique correctly detected the 7 infected

machines, but falsely reports 124 machines that were not

infected. Table 1 shows the number of false positives

generated by TLBD and the single level SVM. Both

techniques successfully identified the botnet infect

machines, but TLBD greatly reduced the number of falsely

identified machines.

These results support our hypotheses that NetFlow records

alone are not sufficient for identifying botnet traffic from

normal network traffic. TLBD is able to overcome this by:

1) Tracking communication channels over time

2) Considering inter-flow and inter-channel

relationships

In all of the data sets a trend of very high detection

accuracy, followed by a dip in performance, and then a

gradual increase in performance was observed. For

example, consider the results from the HTTP-B data set

depicted in Figure 6 B. Accuracy is very high until around

15,000 seconds at which point the accuracy starts to drop.

This initial peak is due to the way the botnet and normal

network data was combined. The time of the botnet

NetFlow records were adjusted to match the time frame of

the normal network data. Initially, the number of botnet

flows is similar to the number of normal network flows in

the system, but as time progresses, the number of normal

flows far outweigh the botnet flows, increasing the

difficulty of the detection problem. Then around time

30,000 seconds the accuracy starts to improve. This is due

to the level-2 Relationship Graph maturing with additional

information over time.

TLBD was able to process the NetFlow records in near

real-time. To evaluate the runtime performance of our

technique, we ran TLBD on a platform with a 2.5ghz Intel

Core i7 with 8 GB of RAM. On average, we were able to

process the incoming NetFlow at 0.916x real-time using 4

parallel relationship analyzers. Figure 7 shows the run-time

performance on the individual data sets. With modest code

improvements or an increase in hardware capability, we are

confident that TLBD could be used to process a real-time

stream of NetFlow records from a large network. There are

multiple opportunities to parallelize level-2. For example,

the relationship graph update process is currently done

serially and could be parallelized with modest

improvements. In addition, it would be trivial to update the

relationship strengths is parallel.

TLBD’s ability to process large amount of network data

quickly can be attributed to it’s two level architecture. The

first level acts as a filter, removing unlikely relationships

from the data stream thus allowing TLBD to scale to large

data sets. As an example, the HTTP-B data set contained

1,131,600 unique IP address but only 9,877 nodes were

created in the relationship graph.

6. Conclusion

We introduced and evaluated a botnet detection scheme

named TLBD (Two-Level Botnet Detector) that meets all

of the 5 criteria enumerated for a botnet detector in Section

1. TLBD identifies suspicious flows in the first level by

tracking inter-flow relationships. In the second level of

TLBD, the persistent inter-channel relationships for

channels corresponding to the suspicious flows are tracked

using a relationship graph to identify botnet C&C channels.

Our experimental assessments, using real traffic flow data

from a campus network, as collected by a edge router,

superimposed with real botnet flow data, shows that TLBD

identifies infected bots, with over 99.8% accuracy and with

a false positive rate (FPR) of well under 1%. Further, these

bots are detected before the bots can launch an attack. The

real-time performance and the high accuracy rate with a

low FPR are realized by using two sets of support vector

machines (SVMs) organized in a two-level hierarchy. Both

SVM layers are trained on the traffic pattern of real botnet

data, overlaid with normal traffic data. TLBD does not

require specific payload level data or specific IP addresses

for the C&C servers. These two features, respectively,

permit TLBD to quickly adapt to new botnets and deal with

botnets that use fast flux techniques to evade detection. The

first level of the hierarchy uses one SVM for each known

botnet and examines flow information collected within a

short time window (with overlaps between consecutive

short windows) to output potentially suspect flows but with

a relatively high FPR. Level 2 maintains a dynamic

relationship graph that tracks the evolving relationships

among communications channels and uses SVMs to

identify botnet command and control channels. The SVMs

use both first (mean) and second order statistics (variance)

Data Set
Comp Time /
Real-Time

HTTP-A 0.743

HTTP-B 1.077

HTTP-C 0.683

IRC-A 1.564

IRC-B 0.664

P2P-Storm 2.917

Total 0.916
Figure 7 TLBD run-time performance on botnet data

sets

of the flows identified by level 1 to identify both regular

and random command and control channels over a large

time interval. The filtering done by the first layer SVMs

keeps the computational and memory resources required by

level 2 manageable, thus permitting the overall solution to

have both high detection accuracy and a low FPR. TLBD

has significant internal parallelism with one SVM per

botnet in each layer, each SVM with its internal, parallel

analyzers for delivering responses in real-time.

Our ongoing work is centered on refining TLBD to

improve its real-time performance even further and on the

use of ensemble-like organization to improve its overall

capabilities.

7. REFERENCES
[BBR+ 12] L. Bilge, D. Balzarotti, W. Robertson et al,

“DISCLOSURE: Detecting Botnet Command and Control

Servers through Large-Scale Network Flow Aaalysis”,

Proc. ACSAC, 2012.

[BHKW 08] P. Bacher, T. Holz, M. Kotter and G.

Wicherski, “Know Your Enemy: Tracking Botnets”,

available at: http://www.honeynet.org/papers/bots/.

[BiSi 06] J.R Binkley and S. Singh, “An Algorithm for

Anomaly-based Botnet Detection”, Proc. 2nd. Usenix

Workshop. on Steps to Reducing Unwanted Traffic on the

Internet, 2006.

[ChDa 09] S. Chang and T. E. Daniels, “P2P Botnet

Detection using Behavior Clustering & Statistical Tests”,

Proc. 2nd ACM workshop on Security and artificial

intelligence (AISec), 2009.

[Cis 12] Cisco Inc., “Introduction to Cisco IOS NetFlow -

A Technical Overview”, available at:

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps653

7/ps6555/ps6601/prod_white_paper0900aecd80406232.ht

ml, last revision (May 2012).

[CJM 05] E. Cooke, F. Jahanian, D. McPherson, “The

Zombie Roundup: Understanding, Detecting, and

Disrupting Potnets”, Proc. 1st. Usenix Workshop on Steps

to Reducing Unwanted Traffic on the Internet, 2005.

[CLK 09] H. Choi, H. Lee and H. Kim, “BotGAD:

Detecting Botnets by Capturing Group Activities in

Network Traffic”, Proc. 4th. Proc. ICST Int’l. Conference

on Communication System Software, 2009.

[CRT 11] F. Chen, S. Ranjan and P.-N. Tan, “Detecting

Bots via Incremental LS-SVM Learning with Dynamic

Feature Adaptation”, Proc. ACM KDD, 2011.

[RoGh 12] Rosswog, J., & Ghose, K. Detecting and

Tracking Coordinated Groups in Dense, Systematically

Moving, Crowds. SIAM International Conference on Data

Mining SDM 2012.

[CoVa 95] C. Cortes and V. Vapnik, “Support-vector

networks,” Machine Learning, vol. 20, 1995.

[DFNM 08] C. Davis, J. Fernandez, S. Neville and J.

McHugh, “Sybil Attacks as a Mitigation Strategy Against

the Storm Botnet”, Proc. 3rd Int’l. Conf. on Malicious and

Unwanted Software, 2008.

[DZL 06] D. Dagon, C. Zou and W. Lee, “Modeling Botnet

Propagation Using Time Zones”, Proc. 13th Network and

Distributed System Security Sym., 2006.

[GCT+ 09] F. Giroire, J. Chandrashekar, N. Taft et al,

“Exploiting Temporal Persistence to Detect Covert Botnet

Channels”, Proc. 12th. Int”l. Symp. on Recent Advances in

Intrusion Detection, 2009.

[GoHo 07] J. Goebel and T. Holz, “Rishi: Identify Bot

Contaminated Hosts by IRC Nickname Evaluation”, Proc.

1st Usenix Workshop on Hot Topics in Understanding

Botnets, 2007.

[GPY+ 07] G. Gu, P. Porras, V. Yegneswaran et al,

“BotHunter: Detecting Malware Infection through IDS-

Driven Dialog Correlation”, Proc. 16th. Usenix Security

Symp., 2007.

[GPZL 08] G. Gu, R. Perdisci, J. Zhang and W. Lee,

“BotMiner: Clustering Analysis of Network Traffic for

Protocol- and Structure-Independent Botnet Detection”,

Proc. 17th Usenix Security Symp., 2008.

[GZL 08] G. Gu, J. Zhang and W. Lee, “BotSniffer –

Detecting Botnet Command andControl Channels in

Network Traffic”, Proc. 15th. Annual Network &

Distributed System Security Symp., 2008.

[Hon 13] Honeynet project pages at:

http://www.honeynet.org/project.

[HSD+ 08] T. Holz, M. Steiner, F. Dahl et al,

“Measurements and Mitigation of Peer-to-Peer-based

Botnets: A Case Study on Storm Worm, Proc. 1st. Usenix

Workshop on Large-Scale Exploits and Emergent Threats,

2008.

[JMGK 09] J. P. John, A. Moshchuk, S.D. Gribble and A.

Krishnamurthy, “Studying Spamming Botnets using

Botlab”, Proc. 6th. Usenix Symp. on Networked Systems

Design and Implementation, 2009.

[KKHS 07] Y. Kugisaki, Y. Kasahara, Y. Hori and K.

Sakurai, “Bot Detection Based on Traffic Analysis”, Proc.

Int’l. Conf. on Intelligent Pervasive Computing, 2007.

[KS 07] S. Kondo and N. Sato, “Botnet traffic detection

techniques by C&C session classification using SVM”,

Proc. 2 nd. Int’l. Workshop on Security (IWSEC), 2007.

[LiCh 10] W.-H. Liao and C.-C. Chang, “Peer to peer

Botnet Detection Using Data Mining Scheme”, Proc. IEEE

Int’l. Conf. on Internet Technology and Applications, 2010.

[LuGh 08] W. Lu and A. Ghorbani, “Botnets Detection

based on IRC-Community”, Proc. IEEE GLOBECOMM,

2008.

[LWLS 06] C. Livadas, R. Walsh, D. Lapsley and W. T.

Strayer, “Using Machine Learning Techniques to Identify

Botnet Traffic”, Proc. 31st IEEE Conf. on Local Area

Networks, 2006.

[MCJ+ 09] M. Bailey, E. Cooke, F. Jahanian et al, “A

Survey of Botnet Technologies and Defenses”, Proc.

Cybersecurity Applications and Technology Conference for

Homeland Security, 2009.

[Mit 97] Mitchell, T.M. Machine Learning 1997, McGraw-

Hill New York, NY, USA.

[NMH+ 10] S. Nagaraja, P. Mittal, C.-Y. Hong et al,

“Botgrep: Finding P2P Bots with Structured Graph

Analysis”, Proceedings 19th. Usenix Security Symp., 2010.

[Pro 04] N. Provos, “A Virtual Honeypot Network”, Proc.

Usenix Security Symposium, 2004.

[RFD 06] A. Ramachandran, N. Feamster and D. Dagon,

“Revealing Botnet Membership using DNSBL Counter-

Intelligence, Proc. 2nd. Usenix Workshop. on Steps to

Reducing Unwanted Traffic on the Internet, 2006.

[SSPS 12] S.S.C. Silva, R. M. P. Silva, R. C. G. Pinto and

R. M. Salles, “Botnets: A Survey”, Computer Networks

Journal, Oct. 2012.

[STG+ 11] S. Saad, I. Traore, A. Ghorbani et al, “Detecting

P2P Botnets through Network Behavior Analysis and

Machine Learning”, Proc. 9-th Annual Int'l. Conference on

Privacy, Security and Trust, 2011.

[SWLL 06] W. Strayer, R. Walsh, C. Livadas and D.

Lapsley, “Detecting Botnets with Tight Command and

Control”, Proc. 31st IEEE Conference on Local Computer

Networks, 2006.

[ViBr 08] R. Villamarin-Salomon and J. Brustoloni,

“Identifying Botnets Using Anomaly Detection Techniques

Applied to DNS Traffic”, Proc. 5th IEEE Consumer

Communications and Networking Conf., 2008.

[WBH+ 09] P. Wurzinger, L. Bilge, T. Holz et al,

“Automatically Generating Models for Botnet Detection”,

in Proc. ESORICS 2009.

[YeRe 08] T. Yen and M. Reiter. "Traffic aggregation for

malware detection." Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer Berlin Heidelberg,

2008. 207-227.

[ZDS+ 08] L. Zhuang, J. Dunagan, D.R Simon et al,

“Characterizing Botnets from email Spam Records”, Proc.

1st. Usenix Workshop on Large-Scale Exploits and

Emergent Threats, 2008.

[ZPL+ 11] J. Zhang, R. Perdisci, W. Lee et al, “Detecting

Stealthy P2P Botnets Using Statistical Traffic

Fingerprints”, Proc. IEEE/IFIP Dependable Networks and

Systems Conf., 2011.

[ZPG+ 11] Zhang, J., Luo, X., Perdisci, R., Gu, G., Lee,

W., & Feamster, N. “Boosting the scalability of botnet

detection using adaptive traffic sampling”. Proc. of the 6th

ACM Symposium on Information, Computer and

Communications Security, 2011

[ZYWW 11] L. Zhang, S. Yu, D. Wu and P. Watters, “A

Survey on Latest Botnet Attack and Defense”, Proc. IEEE

Joint Conf. TrustCom, 2011.

