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ABSTRACT 

Botnets have become a major threat to the Internet as large 

armies of bot machines can be used to carry out a wide 

range of attacks.  We present a botnet detection mechanism 

that uses two levels of support vector machines (SVMs) to 

identify infected bot machines before they are used in an 

attack.  Our technique detects relationships in the network-

flows dynamically and determines if such relationships are 

similar to those found within the command and control 

traffic for known botnets. Two levels of SVMs enable 

monitoring of large networks in real-time, requiring no 

knowledge of the packet payload, and permit detecting bots 

that use multiple communication protocols/frameworks.  

The first level of SVMs examines network flows within short 

overlapping time windows to detect suspect flows. The 

second level SVMs monitor the suspect flows over a longer 

duration to discern inter-flow and inter-channel 

relationships that characterize botnet command and 

control traffic.  The basic framework based on detecting 

similarities in relationships permit it to detect a variety of 

botnets including those that use peer-to-peer protocols 

and/or fast-flux techniques. An experimental evaluation 

using representative botnet flows, superimposed on flow 

information collected over the span of several days in a 

medium scale campus network with over 1000 hosts, shows 

that we realize detection accuracies of over 99.8% with 

false positive rates of well under 1%.` 

1. INTRODUCTION 
Botnets pose a significant security threat to the Internet and 

computing at large.  Botnets consist of malware 

compromised hosts that act as (ro)bots under the command 

of one or more command and control (C&C) hosts which, 

in turn, are directed by the attacker.  The bots are used to 

carry out illicit activities that result in information 

compromise and/or activities that affect the performance 

and usability of the systems [BCJ+ 09, ZYWW 11, SSPS 

12].  Early botnets used the IRC framework and eventually 

switched to peer-to-peer protocols.  Recent botnets use fast 

fluxing techniques that rapidly alter domain and/or IP 

addresses of the command and control servers to evade the 

detection mechanisms [ZYWW 11, SSPS 12]. 

An ideal botnet detection mechanism must exhibit the 

following characteristics: 

R1.  It must handle different communication protocols and 

communication frameworks used by botnets and provide a 

high detection accuracy with very low false positive rates. 

R2. It must not rely on specific details of the botnet 

protocol and packet contents, as the packets involved may 

be encrypted.  Furthermore, the overhead of examining 

each and every packet and matching it with expected 

contents of packets in the command and control packet 

traffic can be very significant. 

R3. It must not be host-centric, as the overhead of a 

sophisticated detection mechanism can easily inundate the 

host in terms of both computing and performance 

requirements. 

R4. It must not rely on the use of specific IP addresses of 

the C&C servers for detecting botnets whose startups can 

be spread out over a long time period, as fast flux 

techniques used in many recent botnets can rapidly alter 

such addresses to disguise the C&C hosts [ZYWW 11]. 

R5. It must be able to detect botnets in real-time.  Implicit 

in this requirement is the necessity for the detection 

mechanism to look only at reasonably sized data sets, as 

botnet activities and phases can span several days. 

The botnet detection mechanism presented in this paper and 

dubbed as the Two-Level Botnet Detector (TLBD) meets 

all of these requirements.  Specifically, TLBD: 

 Examines network flow data generated by network 

routers [Cis 12], not relying on the knowledge of the 

specific contents of the packets.  This also makes 

TLBD a network-centric solution. 

 Uses two-levels of independent support vector 

machine (SVMs) to identify botnet traffic.  The SVMs 

are trained on botnet flow patterns (as is typical of 

most botnet detectors that have been proposed 

recently).  The first-level SVM examines flows within 

short overlapping time windows, identifies suspect 

flows, and feeds these to the second level SVM.  The 

second level SVM discerns inter-flow relationships 

over a longer time span to detect botnet C&C channels.  

 Obviates the need to rely on specific IP addresses of 

C&C servers by focusing on the relationships between 

aggregates of suspected flows over longer time spans 

using a Relationship Graph. 

 Keeps both the storage and performance requirements 

of the detection mechanism manageable to realize real-



time detection capabilities.  The two-level approach 

directly enables both of these characteristics. 

 Works with different communication protocols and 

communication frameworks used by botnets. 

Infected hosts serving as bots must repetitively 

communicate with command and control servers (or other 

bot peers in a peer-to-peer network) to receive instructions 

and updates.  This repetitive communication creates a flow 

pattern that can be exploited to detect the infected machines 

[YeRe 08].  Many existing botnet detection techniques 

examine network flows in isolation and attempt to match 

individual flows to models of known botnets.  Individual 

network flows, or even multiple flows from a short period 

of time, are not sufficient to permit the accurate detection 

of flow patterns for the botnet C&C communication. 

Therefore these techniques suffer from high false positive 

rates because they are unable to distinguish the botnet 

traffic from the normal network traffic. This problem is 

exacerbated by the fact that modern botnets attempt to 

mimic normal network traffic to disguise themselves. 

TLBD takes a different approach by identifying 

relationships in network traffic flows caused by the botnets’ 

command and control channels. A network flow [Cis 12] is 

a summary of a network connection between two machines. 

It contains information such as: duration, number of bytes 

sent, number of packets sent, etc. TLBD considers multiple 

flows across multiple communication channels over an 

extended period of time, detecting and tracking inter-flow 

and inter-channel relationships.  By accounting for the 

interrelationship between communication channels, our 

technique is able to differentiate the botnet flow channels 

from normal network traffic.  TLBD does not rely on 

decoding the payload of individual packets, nor on deep 

packet inspection, and can be used even if the payloads are 

encrypted.  Detecting relationships, or similarities, in the 

network traffic between hosts allows our technique to work 

against a variety of command and control channels 

including peer-to-peer and botnets employing fast-flux 

techniques. 

In order to processes the flow data on a large network in 

real-time, TLBD uses a two-level approach.  The first level 

detects relationships between network flows in a relatively 

short time window. Consecutive short time windows 

overlap.  Flows are considered related if they have similar 

features; these features are identified in Section 3.1.  The 

purpose of this level is to quickly identify flows that are 

likely to be related and resemble botnet C&C flows and 

filter out the majority of unrelated flows.  The second-level 

deals with channels that represent flows that share the 

same source and destination IP addresses, the same 

destination port and the same protocol.  Specifically, the 

2nd-level of TLBD tracks the communication channels 

identified by the first-level over time to accurately identify 

communication channels that are related and that match the 

communication characteristics of known botnets.  As the 

communication channels are tracked, the 2nd–level 

computes first and second order statics over a long time 

period to characterize the channels (described in section 

3.2.2).  Communication channels are considered related if 

their first and second order statistics are similar (see 

Section 3.2.4).  Only relationships that are persistent are 

reported as potential botnet C&C channels.  Botnets must 

continuously contact their C&C server (or peer) to receive 

instructions.  Therefore relationships that exist for only a 

short period of time are not likely to be caused by botnet 

C&C communications. In effect, the first level of TLBD 

identifies only the suspect flows that match botnet flows, 

thus keeping the flow data to be examined by the second 

level to manageable sizes.  This has positive impact on both 

the storage requirements of TLBD, as well as the botnet 

detection time. 

Both the first and second levels use Support Vector 

Machines (SVMs) to differentiated related communications 

channels from the normal botnet traffic.  The SVMs are 

trained on network traffic from known botnets and network 

traffic collected for a campus network. This allows the 

SVM to learn the subtle differences between the botnet 

traffic and the normal network traffic. Detailed knowledge 

of how the botnets operate is not required to train the 

SVMs, thus allowing TLBD to be quickly adapted to new 

botnets as they are discovered.  The first level SVMs 

identify relationships between network flows within a 

relatively short time window.  The second level SVMs 

detect relationships between communication channels, 

which are conglomerates of many flows collected over a 

longer time interval.  

The main contributions of this paper are as follows: 

 We introduce a two level architecture to detect botnets 

with high accuracy and low false positive rate while 

keeping the data set used to track potential botnet 

traffic to a manageable volume. Level 1 detects inter-

flow relationships to identify potentially suspicious 

flows and rejects flows that are unlikely to be caused 

by a botnet.  Level 2 tracks and identifies inter-channel 

relationships for channels corresponding to such flows 

over long time intervals using a relationship graph. 

 A dynamic relationship graph that efficiently tracks 

relationships over time, enabling TLBD to differentiate 

botnet traffic from normal network traffic by 

characterizing the relationships over an extended 

period of time. 

 We show how the proposed two-level approach for 

detecting botnets can be realized using two levels of 

support vector machines (SVMs).  The proposed 

implementation keeps both the storage and 

performance requirements of the detection mechanism 

manageable to realize real-time detection capabilities. 

 We identify and propose the use of first and second 

order statistics of flows for classification that allows 

the SVMs to differentiate botnet communications from 

normal network traffic with very high detection 

accuracy and extremely low false positive rates. 



 We provide an experimental evaluation of our 

technique on a large data set based on real network 

traffic collected from a campus network, with real 

botnet traffic data superimposed on the campus traffic 

trace and demonstrate that the proposed two-level 

botnet detection mechanism not only provides a very 

high accuracy (>99.8%) but does so with extremely 

low false positive rates (<0.2%).  The proposed 

technique is also shown to realize faster-than-real-time 

performance. 

 We compare our technique to a single level SVM using 

the same data set. 

2. Motivation and Approach 
Differentiating network traffic generated by botnets from 

normal network traffic is very difficult for traditional 

classification techniques.  To illustrate this, we trained a 

SVM to identify botnet traffic from normal network traffic 

collected from a campus network (see Section 5 for details 

of the botnet traces and the normal traffic).  The SVM was 

able to detect the botnets, but generated a large number of 

false positives. The number of false positives produced by 

using a single SVM is shown in the column labeled “1 

SVM False Positives” in Table 1.  The data contained in a 

single flow is not sufficient to differentiate botnet traffic 

from normal network traffic.   

To increase the information available for classification, we 

explored tracking the evolution of the communication 

channels represented by the flows in a relationship graph 

similar to the DDBC algorithm proposed in [RoGh 12].  A 

flow describes a connection between machines in the 

network. We call a set of connections that share the same 

source IP address, destination IP address, destination port, 

and protocol a communication channel. The relationship 

graph tracks the communication channels over time and 

identifies communication channels that are persistently 

related (see Section 3.2.1 for details).  

Unfortunately, tracking the relationships between all 

communication channels requires a large amount of 

memory and processing resources, which makes it 

infeasible to monitor the traffic from a large network in real 

time.  In order to detect relationships between a set of 

communication channels, the channels must be pairwise 

compared to each other.  In the worst case, each flow 

represents a unique communication channel and would 

have to be compared to every other flow to build the 

relationship graph. This results in a runtime complexity of 

O(n2) where n is the number of flows collected.  

To address this problem, we propose a two-level approach 

where the first level acts as a filter to reduce the 

computational complexity of the second level.  The second 

level uses the relation graph concept to track the 

relationships between channels over a longer period of 

time.  The first level performs pairwise comparison 

between flows collected during a relatively short time 

period and uses a SVM to identify pairs of flows that are 

likely to be the result of botnet C&C communications.  The 

second level uses these flows to build a relationship graph.  

Limiting the time period considered by the first level 

constrains the complexity of the problem, essentially 

providing a filter for the second level, which combines the 

data reported from the first level over a long period of time.  

The column labeled “TLBD False Positive” in Table 1 

shows that this technique is able to greatly reduce the 

number of false positives when compared to using a single 

SVM. 

 

3. Two-Level Botnet Detector (TLBD) 

Figure 1: Life Cycle of a Botnet 

Data Set 
Duration 

(hrs) 
Number of 
Botnet IP 

Number of 
Nominal Ips 

1 SVM False 
Positives 

TLBD False 
Positives 

HTTP-A 50 11 1,131,600 9,772 14 

HTTP-B 50 6 1,131,472 5,217 124 

HTTP-C 50 5 1,131,815 8,143 147 

IRC-A 50 7 1,131,798 12,578 121 

IRC-B 50 6 1,131,815 6,094 26 

P2P-Storm 24 13 685,694 4,556 1,064 

Table 1: Summary of test data sets and number of false positives produced by 1 SVM and TLBD 



Our goal is to detect botnet infected machines on a large 

network before they carry out an attack.  In such a network, 

we cannot assume that we will have access to all of the 

machines on the network; so to be effective the botnet hosts 

must be detected based on their network traffic.  It is also 

not feasible to inspect every packet on a large network in a 

timely manner.  To address this challenge, our technique is 

based on NetFlow records [Cis 12] collected by the edge 

routers in the network. The NetFlow records summarize  

“connections” between two machines as data flows in each 

direction.  It contains information such as duration, number 

of bytes send, number of packets sent, etc.  The NetFlow 

fields that are used by TLBD are described in Section 3.1 

below. 

The typical lifecycle of a botnet is depicted in Figure 1.  In 

the first phase, the host is initially infected with the botnet.  

This may occur in a variety of manners including the 

importation of computer viruses and malware.  After the 

machine is infected, the botnet software will repetitively 

connect, or rally, with its Command and Control (C&C) 

server (or with a peer in a peer-2-peer botnet) to receive 

instructions (Phase 2).  The C&C server may instruct the 

bot to download an update (Phase 4) or to launch a 

malicious activity such as sending spam email or 

participating in a distributed denial of service attack 

(Phase3) [SSPS 12].   

TLBD monitors the network traffic and detects similarities 

in the network traffic between different machines caused by 

the bot machines making connections to their C&C servers 

(or peers) in Phase 2.  We expect the C&C traffic from 

multiple hosts infected with the same botnet to share 

similar characteristics such as the interval between 

connections, duration of connections, and the amount of 

data transferred during a connection.  TLBD uses these 

similarities to identify communication channels that are 

likely to be caused by the same botnet malware.  The 

challenge is differentiating similarities caused by botnet 

malware infections from similarities caused by normal 

network services. 

To address this problem TLBD tracks the relationships 

between communication channels over time using a 

dynamically evolving Relationship Graph where 

communications channels are the nodes and relationships 

between the commutation channels are the edges.  

Relationships in the graph are monitored for persistence 

and compared against expected relationships caused by 

botnets, learned by observing known botnets.  The 

machines associated with persistent relationships that 

match the botnet relationships are reported as potentially 

infected machines.  Persistence is a key attribute of a 

relationship caused by botnet C&C communications.  

Botnet malware must repeatedly contact its C&C server (or 

peer) to receive instructions.  If it fails to do this, the 

infected machine is essentially useless to botnet because it 

cannot be controls.  Therefore, if a relationship does not 

persist over time it is unlikely that it was caused by botnet 

C&C communication.  If it is determined that a relationship 

is not persistent, the edge associated with it is pruned from 

the relationship graph.  This pruning process helps control 

Figure 2: TLBD is organized into two levels.  Level-1 is responsible for quickly detecting local relationships while 

Level-2 refines the relationships overtime, accurately detecting persistent relationships 



the size of the relationship, which in turn controls the 

memory and computational resource use.  

In order to efficiently detect persistent relationships in the 

network traffic between machines, we propose a two level 

approach with the following functions at each level: 

 Level-1 – Local Relationship Detection 

 Level-2 – Persistent Relationship Detection 
 

Level-1 examines a set of NetFlow records within a 

relatively small time window, and finds NetFlow records 

that are related.  A NetFlow represents a single 

communication, or connection, between two machines on 

the network.  NetfFow are consider related if they have 

similar characteristics such has duration, number of packets 

sent, and number of bytes sent, etc (see section 3.1 for 

details).   This level serves as a filter to the rest of system 

by rejecting the majority of unrelated flows.  Detecting 

relationships between individual flows is not sufficient for 

accurately differentiating relationships caused by botnet 

infected machines and normal network traffic.  It is 

common for botnets to attempt to disguise their 

communication channels by mimicking normal network 

traffic or by delaying steps within Phase 2.  In order to 

identify the botnet communication channels in the midst of 

normal network traffic, multiple flows across multiple 

communications channels must be observed over an 

extended period of time.  Level-2 of TLBD does this.   

Level-2 builds an evolving Relationship Graph based on 

the local relationships detected by Level-1.  The 

Relationship Graph is used to monitor the relationships 

(edges) between communication channels (nodes) over 

time. Communication channels represent a series of 

communications, or connections, between two machines on 

the network that occur of a period of time.  Pairs of related 

NetFlow detected by level-1 are used to update the nodes of 

the graph.  The nodes of the graph collect first and second 

order statistics about the communication channels such as 

the mean number of flows per hour, mean and variance of 

the number of packets per flow, mean and variance of the 

number of bytes per flow, etc. (see section 3.2 for details).  

The first order statistics estimate the average characteristics 

of the communication channel and the second order statistic 

are used to judge consistency of these characteristics.  The 

edges in the graph are periodically examined to find 

persistent relationships that match relationships seen for 

known botnets.  We expect that communication channels 

associated with the same botnet to have very similar first 

and second order statistics because the communication over 

these channels is caused by the same malware.  Likewise, 

we expect the first and second order statistics of a channel 

caused by a known botnet to be very similar to the statistics 

generated by training a model on similar botnet traffic.  The 

machines associated with communication channels that are 

persistently related and match a botnet model are reported 

as potentially infected machines. Figure 2 illustrates how 

our botnet detection technique is organized. 

3.1 Level-1: Local Relationship Detection  
The goal of Level-1 is to find potentially related flows, and 

filter out flows that are unlikely to be related, using a 

stream of network traffic collected by a router at the edge 

of the monitored network as input.  As depicted in Figure 2, 

the Level-1 algorithm is subdivided into a NetFlow 

Creator, and a set of Relationship Analyzers.  The NetfFow 

collector is responsible for monitoring the network traffic 

coming and leaving the monitored network, and creating 

NetFlow records [Cis 12] that summarize the traffic.  A 

NetFlow record represents a “connection” between two 

machines.   All packets associated with a NetFlow record 

contain the same source IP address, destination IP address, 

source port, destination port, and protocol. A NetFlow 

record contains fields that describe the data that was sent 

over the connections.  We are concerned with the following 

fields from the NetFlow record: 

 Start Time 

 End Time 

 Duration 

 Protocol 

 Number of Packets Sent 

 Number of Bytes Sent 

These fields describe the interaction between the machines.  

Start and end time will be used to identify repetitive 

patterns in the traffic between two machine over time. As 

the botnets are repeatedly querying their C&C servers we 

expect to see similarities in duration, number of packets 

sent, and number of bytes sent between netflows that are a 

result of this communication.  These similarities will form 

the basis of the inter-flow realtionships. The Netflow 

Creator is implemented in the border routers of the 

network.  This step is not the focus of this work. 

The NetFlow produced by the NetFlow Collector are 

processed by the Relationship Analyzers.  A relationship 

analyzer is responsible for detecting potentially related 

NetFlow from a relatively short period of time.   Only short 

periods of time are analyzed to reduce the computational 

complexity of comparing the NetFlow records collected 

during the time period.  As depicted in Figure 2, a set of 

Relationship Analyzer can be used to process different time 

periods in parallel.  The length of the time interval 

processed by a Relationship Analyzer is a tradeoff between 

computational complexity and the probability of observing 

related NetFlow in the time window.  Increasing the size of 

the time window increases the computations required, but 

also increases the probability of observing two or more 

related flows within the time window.  The time windows 

observed by the Relationship Analyzers are not required to 

all be the same length.  If it is determined that a large time 

window needs to be observed, a Relationship Analyzer can 

process the data in parallel with the Relationship Analyzers 

that are processing the smaller time windows. The 

Relationship Analyzers use a white list of known hosts to 

filter out network traffic to and from hosts that are unlikely 

to be part of a botnet.  We built this white list from the top 



10000 alexa (http://www.alexa.com/) domains and IP 

addresses hosting key campus network services.  

To detect potential relationships between NetFlow, each of 

the Relationship Analyzers uses a Support Vector Machine 

(SVM) to compare the NetFlow records collected during a 

time window.  Minimizing the number of both false 

positive and false negative errors is critical.  False positives 

increase the workload of Level 2 and false negatives are 

missed opportunities to identify the botnets.  SVMs were 

selected because they minimize both false positives and 

false negatives.  The SVM classifies a pair of NetFlow 

records as either related or unrelated based on the following 

features: 

1. Protocol 

2. 
                 –                

                              
 

3. 
                              

                            
 

4. 
                          

                         
 

5. 
                                                           

                                                         
 

These features were selected to measure the similarity 

between the flows.  We expect that flows created by the 

same botnet malware will use the same protocol and have 

similar characteristics such as duration, number of packets, 

number of bytes, and bytes per packet.  We selected these 

characteristics because they measure the duration of the 

flow and the rate of date transferred without having to 

decode the payload of the packets.  Features 2-5 are a 

normalized difference between characteristics of the flows 

being compared. We expect the values of these features to 

be small if the flows are related.  If the two flows are from 

a known botnet, we also expect the values of these features 

to be similar to a model learned from training on similar 

botnet data.  Related records are passed through to Level-2 

while unrelated records are discarded.  

Each Relationship Analyzer produces a set of local 

relationships that are passed to Level-2.  A local 

relationship consists of a pair of NetFlow records.  Based 

on our experiments, Level-1 is able to reliably detect the 

related NetFlow records, but does suffer from a relatively 

high number of false positives.  We believe that 

information contained in a single NetFlow record is not 

sufficient to accurately differentiate the botnet NetFlow 

records from the NetFlow records generated by normal 

network traffic.  Level-2 of our technique considers 

multiple flows across multiple communications channels 

over an extended time duration.  This additional 

information allows Level-2 to reduce the number of false 

positives reported by Level-1. 

3.2 Level-2: Persistent Relationship Detection 
The goal of Level-2 is to accurately identify botnet infected 

machines on the network that is being monitored.  To 

overcome the false positive problem faced by Level-1, 

Level-2 is based around a Relationship Graph that tracks 

and monitors relationships among communication channels 

between machines over an extended period of time.  This 

additional information allows Level-2 to differentiate the 

botnet communication channels from the normal network 

traffic. 

3.2.1 Relationship Graph 
As shown in Figure 2, local relationships detected by the 

Relationship Analyzers are passed to the Relationship 

Maintenance phase, which uses the relationships to update 

the Relationship Graph.  The Relationship Graph is a 

weighted graph where the nodes represent communication 

channels between pairs of machines and the edges track 

relationships between the communication channels over 

time.  The purpose of the relationship graph is to detect 

persistent relationships between communication channels.  

Each node in the relationship graph is uniquely identified 

with the following attributes: 

 Source IP Address 

 Destination IP Address 

 Destination Port  

 Protocol 

Each node collects the following statistics about the 

communication that it represents: 

 Mean Number of NetFlow per Hour 

 Mean Packets per NetFlow 

 Variance of the Packets per NetFlow 

 Mean Bytes per Packet 

 Variance of the Bytes per Packet 

 Mean Duration of NetFlows 

 Variance of the Duration of NetFlows 

 Mean Time Between NetFlows 

 Variance of the Time Between NetFlows 

3.2.2 First-Order and Second-Order Statistics 
Intuitively, periodic C&C traffic patterns can be detected 

using first order statistics (mean).  However, to identify 

randomly initiated C&C traffic the first order statistics are 

not sufficient. We thus added second order statistics, 

specifically variance, to characterize the distribution of the 

network traffic over the channels to improve the overall 

detection accuracy of TLBD.  Estimating the distribution of 

network traffic over the channels allows us to detect both 

periodic and randomly initiated C&C traffic. 

These statistics are updated based on the local relationships 

detected by the Level-1 Relationship Analyzers.  The 

NetFlow records in the local relationships are used to 

update the statistics of the corresponding nodes in the 

Relationship Graph, creating a summary NetFlow that 

characterizes the communication channel over an extended 

time.  If a corresponding node does not exist in the 

Relationship Graph, a new node is created.  The nodes 

corresponding to the NetFlow that are contained in a local 

relationship are connected via an edge in the graph.  Once a 

node is added to the Relationship Graph, the Level-1 

Relationship Analyzers allow NetFlow records related to 

http://www.alexa.com/


the node to pass through, even if a related record is not 

found in the time window.  This ensures that once a 

communication channel is suspected of being caused by a 

botnet, it is characterized with as much data as possible.  

This is depicted as the dashed line labeled “Existing 

Relationships” in Figure 2. 

3.2.3 Relationship Graph Example 
Figure 3 illustrates how the Relationship Graph captures 

the structure of botnets over three time steps.  The top half 

of the figure shows a botnet and a normal network service 

(web server, IRC server) that are active in the network 

being monitored. The arrows represent the communication 

channels between the machines on the network and the 

servers.  The bottom half of the figure shows the 

Relationship Graph that is generated by TLBD.  Each node 

in the Relationship Graph corresponds to a communication 

channel in the network and the edges represent 

relationships between the communication channels.  The 

weights on the edges represent the strength of the relations.  

A high relationship strength indicates that TLBD is 

confident that the relationship is persistent and is the result 

of botnet activity.   The relationship strengths are computed 

at each time step by the level-2 SVM. 

At the first time step (Figure 3 - T1), the relationship graph 

contains edges that represent the botnet relationships 

{{a,b},{a,c},{b,c}} the network service relationships 

{{d,e},{d,f},{e,f}} and false relationships 

{{b,e},{c,e},{b,d}}.  The relationship strengths of all edges 

are low at this point indicated the TLBD is not confident in 

any of the relationships.   

At the second time step (Figure 3 - T2), the relationship 

strengths of botnet relationships {{a,b},{a,c},{b,c}} 

increase.  The additional data collected about the 

communication channels has given TLBD more confidence 

that these relationships are persistent and caused by a 

botnet.  In addition the strengths of the false relationships 

{{b,e},{c,e},{b,d}} have decreased.   

Finally at the third time step (Figure 3 - T3), the botnet 

relationships have a very high relationship strength and the 

strength of the false relationships were reduced to 0, and 

the edges were pruned from the graph. During this time an 

additional machine has started communicating with the 

network service and has been added to the relationship 

graph (node g).  The relationships caused by the network 

services are maintained in the relationship graph as edges 

{{d,e},{d,f},{b,g},{e,f},{e,g},{f,g}}.  These relationships 

have a low relationship strength indicating that TLBD is 

not confident that they are the result of a botnet. 

Communication channels c and d are from the same host to 

the botnet C&C server and the network service 

respectively.  This represents a situation where the user of 

the host machine is unaware of the botnet infection and 

continues to use the machine normally while the botnet 

malware is communicating with its C&C server.  TLBD 

works at the communication channel level and tracks both 

communication channels separately (nodes c and d in the 

relationship graph) even thought they originated from the 

same host. 

3.2.4 Tracking Evolving Relationships 
Periodically, the relationship graph is searched for 

persistent relationships that are likely to be caused by 

botnet command and control channels.  A SVM is used to 

identify edges in the relationship graph that represent 

botnet activity.  When an edge is detected that represents a 

botnet relationship, the source IP addresses from the 

associated nodes are reported as possible botnet nodes.   

There is one SVM per known botnet in each layer.  Section 

5.3.1 describes how the parameters for the SVMs are 

selected and how the SVMs are trained.  In order to 

evaluate an edge using the SMV, an input vector must be 

generated that represents the relationship.  We use a 13-

Figure 3 The evolution of a Relationship Graph over three time periods.  The top half of the image shows the network 

that is being monitored and bottom half show the resulting Relationship Graph. 



element input vector based on the statics collected by the 

nodes in the graph:  

1. TCP:  1 if nodeA.protocol = nodeB.protocal = TCP, 

otherwise -1 

2. UDP: 1 if nodeA.protocol = nodeB.protocal = UDP 

otherwise -1 

3. ICMP:  1 if nodeA.protocol = nodeB.protocal = 

ICMP otherwise -1 

4. OTHER Protocol : 1 if nodeA.protocol = 

nodeB.protocal <> TCP || UDP || ICMP otherwise -1 

5. Delta Mean Netflows per Hour: 

|nodeA.meanNetflowPerHour - 

nodeB.meanNetflowPerHour| 

6. Delta Mean Packets per Flow: 

|nodeA.meanPktsPerFlow - nodeB.meanPktsPerFlow| 

7. Delta Variance Packet per Flow: 

|nodeA.varPktsPerFlow - nodeB.varPktsPerFlow| 

8. Delta Mean Bytes per Packet: 

|nodeA.meanBytesPerPkt - nodeB.meanBytesPerPkt| 

9. Delta Variance Bytes per Packet: 

|nodeA.varBytesPerPkt - nodeB.varBytesPerPkt| 

10. Delta Mean Netflow Duration: 

|nodeA.meanFlowDuration - nodeB. 

meanFlowDuration | 

11. Variance Netflow Duration: 

|nodeA.varFlowDuration - nodeB. varFlowDuration | 

12. Delta Mean Time Between Netflows: 

|nodeA.meanTimBetweenFlows - nodeB. 

meanTimeBetweenFlows | 

13. Delta Variance Time Between Netflows: 

|nodeA.varTimBetweenFlows - nodeB. 

varTimeBetweenFlows | 

The first four elements of the vector are associated with the 

protocol used by the communication channel.  Channels 

that use different protocols are not considered related.  The 

remaining 9 elements are the absolute values of the 

differences between the statistics computed by the nodes in 

the Relationship Graph.  The difference is used because it 

provides an estimate of the similarity between the channels 

that are being compared.  We expect that channels that are 

the result of botnet C&C traffic will have similar statistics 

and therefore the difference between their means and 

variances will be close to 0.  On the other hand, we expect 

the differences to be significantly higher when comparing a 

pair of unrelated channels.  This will allow the SVM to 

differentiate pairs of related channels from pairs of 

channels that are not related. 

The edges of the Relationship Graph are periodically 

evaluated by computing the above 13-element vector for 

each edge, and using the Level-2 SVM to evaluate the 

Relationship Strength of the inter-channel relationship 

represented by the edge. The Relationship Strength is a 

measure of how confident TLBD is that the edge represents 

a botnet relationship and is in the range of [0,1], with 0 

indicating that the relationship is the result of normal 

network traffic and 1 indicating that the relationship 

definitely is the result of botnet communications.  A 

Relationship Strength Threshold is used to specify the 

confidence level required to classify a relationship as a 

botnet detection.  In our experiments the Relationship 

Strength Threshold was set to 0.5.  Edges that have a low 

Relationship Strength, less than the Relationship Strength 

Threshold, for a long period of time are pruned from the 

graph.  Nodes that have no edges are also pruned. 

By using summary NetFlow information and considering 

the interrelationships between the communication channels, 

the Level-2 SVMs are able to distinguish the botnet 

communication channels from the normal network traffic.  

The Level-1 portion of the system is needed to filter out the 

majority of normal network traffic and control the growth 

of the relationship graph.   

4. Related Work 
The body of work on botnet detection techniques is both 

rich and quite varied.  Recent surveys on botnet 

technologies and detection techniques include [BCJ+ 09, 

ZYWW 11, SSPS 12].  

Honeynets [Prov 04, BHKW 08, Hon 13] are the earliest 

examples of widely-deployed mechanisms within networks 

for learning about the characteristics of botnets for devising 

detection techniques and disinfection of compromised 

hosts.   Essentially, honeynets employ decoy hosts within a 

network that are permitted to be infected with botnet 

malware, so that characteristics of new botnets can be 

learned.  

Many of the earlier botnet detection techniques used 

specific knowledge of the botnet protocols as well as 

knowledge of the packet payloads used to download 

malicious binaries from the C&C server.  These so-called 

signature-based detection techniques require the ability to 

do deep packet inspection and are exemplified by Rishi 

[GoHo 07], the work of [KKHS 07] and [WBH+ 09].  A 

limitation of the signature-based approaches is in their need 

to have specific knowledge about the malware from C&C 

servers, preempting them from adapting quickly to newly 

deployed and potentially unknown botnets.   The signature 

database used by these techniques also grows in size even 

with small variations introduced to previously seen botnets.  

Signature based schemes are also not capable of dealing 

with encrypted packet payloads. 

The class of anomaly based botnet detection techniques do 

not require protocol-specific and content-specific 

knowledge and instead focus on detecting unusual traffic 

patterns characterized by high traffic volume, packet 

latencies, correlated host behavior, anomalous host 

responses and the like.  These techniques can also use 

traffic patterns of known botnets to speed up the detection 

process and as such are capable of quickly learning the 

characteristics of new botnets without the need for any 

knowledge of the contents of the botnet-related packets.  

The bulk of the newer techniques for botnet detection are 

anomaly-based and many use NetFlow [Cis 12] 



information captured from routers in the course of routine 

monitoring. 

Anomaly-based techniques, largely, are network-centric, as 

they are deployed at the network level.  Techniques in this 

class focus on: 

 IRC traffic for detecting IRC-based botnets, such as 

the work of [CJM 05, BiSi 06, SWLL 06, LuGh 08]. 

 DNS traffic for detecting bot connections to C&C 

hosts, such as the work of [DZL 06, RFD 06, ViBr 08, 

CLK 09]. 

 SMTP traffic to detect bots from their memberships in 

email spam lists, such as the work of [ZDS+ 08, 

JMGK 09]. 

 P2P traffic used by many newer botnets, such as the 

work of [ChDa 09, DFNM 08, HSD+ 08, LiCh 10, 

NMH+ 10, ZPL+ 11].   

Some anomaly-based detection techniques are also capable 

of dealing with multiple communication protocols and 

frameworks used by the botnets and many specific 

techniques within this subclass use machine learning 

concepts (as detailed later).  Examples of botnet detection 

techniques that deal with multiple protocols include 

Bothunter [GPY+ 07 ], Botsniffer [GZL 08] and Botminer 

[GPZL 08] and the work of [GCT+ 09, WBH+ 09]. 

A significant and relatively recent research direction in 

botnet detection has been centered on the use of machine 

learning techniques.  We focus on these efforts, as the 

technique proposed here, TLBD, falls into this subclass of 

solutions. 

Botminer [GPZL 08] is an anomaly-based botnet detector 

that uses data clustering techniques to classify traffic 

between C&C hosts and botnets, assuming that all of the 

bots communicate with the C&C hosts in a similar fashion 

and exhibit similar malicious activities.  Botminer uses the 

notion of aggregated flows for multi-layered clustering and 

is pioneering in not requiring specific knowledge of 

malware binaries, C&C protocols, C&C host addresses or 

botnet signatures.  As observed in [GPZL 08], Botminer is 

not capable of providing real-time detection in high-speed 

networks, although it realizes very high detection 

accuracies with extremely low false positive rates.  

Although some potential extensions to deal with evasive 

botnets are discussed in [GPZL 08], it is unclear as to how 

well Botminer will perform, both in terms of accuracy and 

detection time, when the botnet uses fast flux and other 

techniques to evade detection. 

The DISCLOSURE system proposed in [BBR+ 12] uses 

random forest classifiers to distinguish C&C traffic from 

normal traffic, assuming no specific knowledge of specific 

C&C protocols to detect C&C servers.  A variety of 

external reputation rankings are then used to reduce the 

number of false positives.  DISCLOSURE is able to detect 

botnets with false positive rates of 6% to 20% to detect 

close to 90% of the botnets. 

In [LWLS 06], machine learning techniques are evaluated 

and used for detecting C&C traffic for IRC-based botnets, 

using a two-staged approach similar to TLBD.  The first 

stage is used to distinguish between IRC and non-IRC 

traffic, serving as a pre-filter to the second stage, which 

distinguishes botnet C&C traffic from legitimate IRC 

traffic.  Average false positive rates in the range 12% to 

14% are achieved by this technique.  In [ChDa 09], the 

authors use behavioral clustering, followed by statistical 

tests to identify anomalous traffic that characterize C&C 

communication patterns of botnets that use peer-to-peer 

communication. 

Support vector machines (SVMs) have been used recently 

to classify botnet traffic patterns and botnet detection.  

Some examples of these techniques are now described. 

Five machine-learning techniques (including SVM) are 

evaluated and used in [STG+ 11] for detecting peer-to-peer 

botnets in the C&C phase before the onset of any attack.  A 

total of 17 features related to network flows and host 

communication patterns are used in this technique to realize 

error rates of 6% to 20%, with support vector machines 

providing the best error rate (6%). 

In [KS 07], a support vector machine is used to detect C&C 

sessions using packet histogram data, achieving 95% 

accuracy on test data sets.  In [CRT 11], an online least 

square support vector machine is used to adapt to the 

changes in the feature set needed for the classifier as 

newly-infected machines assume botnet-specific roles and 

also to changes in the class labels of the training data set.  

[CRT 11] uses an intrusion detection system to mark 

suspect flows initially before using the SVM.  The main 

contribution of [CRT 11] is a methodology that adapts to 

the feature set (including suspect IP addresses) as they 

change over time. A key assumption of the technique of 

[CRT 11] is that machines can be identified as bots by 

examining the server addresses they visit.  This assumption 

is unrealistic for botnets that use fast flux techniques to 

change IP addresses rapidly. 

[YeRe 08] describes a malware detection algorithm that 

finds communication “aggregates” based on network-flow 

data.  They aggregate the network traffic 3 ways: common 

destination, similar payload, and common internal-host 

platform.  Suspect communications are found by finding 

the intersection of the 3 aggregates. The 3 aggregate 

approach is similar to the two-level approach of TLBD, but 

differs in several key areas.  The technique proposed in 

[YeRe 08] depends on finding common destinations.  It is 

not clear that this approach would be able to find P2P 

botnets.  They also relay on examining the payload of the 

traffic, which limits their effectiveness when encryption is 

used.  There are also several constants that need to be set 

and it is not clear how to select their values. 

The approach presented in this paper uses a 2-layered 

technique to detect botnets, using SVMs at each level and 

does not require specific internal details of botnets and is 

capable of dealing with botnets that use fast flux techniques 



for evading detection.  The SVMs are trained to quickly 

learn the traffic patterns of botnets and do not require the 

use of internal features of botnet traffic or IP addresses and 

the like.  The first layer detects inter-flow relationships 

within a short time window and the second layer detects 

relationships among communications channels using 

aggregates of flows detected by the first SVM layer over a 

longer time duration.  The two SVM layers thus identify 

botnet flows and the collective communication pattern of 

such flows, regardless of whether the botnets use a peer-to-

peer architecture or not.  Thus, the proposed technique is 

much more universal compared to many of the machine 

learning based techniques.  The universality of our 

proposed approach is thus like Botminer [GPLZ 08] but 

unlike Botminer, our technique works in real-time, deals 

with fast-flux techniques and does not require the tracking 

of specific malicious behavior.  The proposed detection 

system realizes false positive rates of less than 1% with a 

high detection accuracy (over 98%), rivaling or exceeding 

the reported performance of the machine learning based 

techniques discussed earlier.  TLBD also meets all of the 

requirements of an ideal botnet detector, as enumerated in 

Section 1. 

5. Experimental Results 
The goal of the experiments presented in this section is to 

determine if TLBD is able to differentiate botnet traffic 

from normal network serveries and activity. We assessed 

the performance of TLBD using network traffic collected 

from six different botnets overlaid on network traffic 

collected from our campus network at included a rich 

variety of network traffic. The campus network contains a 

broad range of applications including web traffic, streaming 

video services, chat services, SW update service, etc. We 

present the performance of both the Level-1 SVMs and 

Level-2 SVMs independently and then show the 

performance of the entire TLBD system.  For comparison 

purposes, we evaluated the performance of a single SVM 

on the same data sets. 

5.1 Data Sets 
We used the same 6 botnet data sets that were used in 

[ZPG+ 11] to evaluate the performance of TLBD.  This 

data set was selected to permit our results to be compared 

with the results of others, including [ZPG+ 11]. The 

authors were able to share with us 3 HTTP based botnets: 

HTTP-A, HTTP-B, and HTTP-C; 2 IRC based botnets: 

IRC-A, IRC-B; and 1 Peer-To-Peer based botnet: P2P-

Storm.  They were not able to share a second P2P based 

botnet (P2P-Waldec) or the network data collected from 

their campus network due to privacy considerations. 

The IRC-A network traffic was collected by running 

“TR/Agent.1199508.A” and HTTP-A data was collected by 

running “Swizzor.gen.C.”  The botnet emulation 

framework Rubot was used to generate IRC-B, HTTP-B, 

and HTTP-C.  HTTP-B contacts its C&C server 

periodically at 10 minute intervals, and HTTP-C contacts 

its C&C server at a randomly generate interval between 0-

10 minutes. The P2P-Strom data was generated by running 

the Storm botnet in a controlled environment [ZPG+ 11]. 

In addition to botnet network traffic, we configured the 

router (Cisco Catalyst 6153) at the edge of our campus 

network to collect NetFlow records for one week.  The 

campus network traffic was collected from a university 

campus network with over 1,000 hosts.  The data collected 

contains approximately 1,500 NetFlow per second.  Over a 

24 periods we typically encountered approximately 

900,000 unique IP addresses.   

We used softflowd and nfdump to generate NetFlow records 

from the botnet network data.  We then overlaid the botnet 

NetFlow records on the NetFlow records collected from the 

campus network to create 6 datasets that contain NetFlow 

records from both botnets and normal network traffic.   

5.2 Training Data vs Test Data 
TLBD uses SVMs to detect related NetFlow.  Like any 

machine learning system, the SVMs have to be trained on 

data representative of what they have to detect.  To 

Figure 5 Precision and Recall of the Level-2 SVMs on 

the botnet data sets 

 

Figure 5 Precision and Recall of the Level-1 SVMs on 

the Botnet data sets. 



generate a set of training data we first merged the botnet 

traces and the network traces from the campus network by 

shifting the time and the IP-address range of the botnet 

traces into the range of the traces collected from the 

campus network.  We then split this combined data set into 

two halves.  One half was used to do parameter estimation 

and training and the other half was used to evaluate the 

systems.  Thus the data sets used for training and 

evaluation are disjoint. The training data set was sampled 

so that the number of botnet traces was equal to the number 

of campus network traffic traces.  This sampling was done 

because there are far more traces from the campus network 

data than botnet traces.  Balancing the training set prevents 

the SVMs from weighing the campus network data more 

than the botnet data.  The test data set for evaluating TLBD 

was not sampled. 

5.3 Level-1 Local Relationship Detection 
In order to evaluate the performance of the Level-1 

Relationship Analyzer we trained 6 SVMs, one per known 

botnet.  For each botnet, we split the associated data set 

into a training set and test set.   For both the training and 

test data, we generated a set of labeled, local relationship 

examples.  To do this we ran the Level-1 process with a 

time window of 15-minutes and each pair of NetFlow 

records in a time window were classified as related if both 

NetFlow were from the botnet data, and unrelated if at least 

one of the NetFlow were from the normal network traffic.   

The normal network traffic accounts for the vast majority 

of NetFlow records in the data set.  Because it is very 

important that the Level-1 SVM detect the related NetFlow 

records, at the possible expense of increasing false 

positives, we balanced the training set so it contained 50% 

related examples, and 50% unrelated examples.  

5.3.1  Parameter Selection 
Before we could train the SVM we had to first select a set 

of parameters to use.  We chose the Radial Bias Function 

(RBF) as the kernel function based on its small number of 

parameters and its performance as mentioned in [RoGh 12].  

The RBF function has only 1 parameter GAMMA and the 

SVM has another parameter C that controls the softness of 

decision boundary [CoVa 95].  To select values for C and 

GAMMA, we performed a grid search over possible values 

using 5-fold cross validations and selected the parameter 

that produced the best results.  The SVM was then trained 

over the entire training data set using the selected 

parameters.  We then evaluated the performance of the 

SVM using the test data set.  

5.3.2 Level-1 Performance 
Figure 5 shows the Precision and Recall of the Level-1 

SVMs on the 6 data sets.  Precision and Recall are defines 

as: 

Precision = 
                

                                 
 

Recall = 
               

                                  
 

Precision is a measure of how well the detected 

relationships represent botnets.  Recall measures how many 

of the true relationships were detected.  The precision and 

recall measures are very good across all of the data sets.  

Despite this, the number of false positives is still quite high.  

This is not captured by precision and recall because the 

number of normal network traffic examples far exceeds the 

number of botnet traffic examples in the test set.  In this 

case, even a low false positive rate (high precision) can 

lead to a large number of false positives when compared to 

the number of true botnets.  For example, the Level-1 SVM 

for HTTP-B achieved a False Positive Rate of 0.0018, but 

this consisted of 2575 false positives compared to only 7 

true positives. This high number of false positives is what 

dictates the need to the second Level of our technique. 

5.4 Level-2 Persistent Relationship Detection 
We took a similar approach to training and evaluating the 

performance of the Level-2 SVMs.  Because Level-2 uses 

the results of Level-1 as input, we had to simulate Level-1 

in order to generate the training data for Level-2.  To do 

this, we ran Level-1 as described above, but instead of 

using the SVMs to classify pairs of NetFlow Records as 

related or unrelated, we classified all pairs as related.  This 

represents the worse case performance, as far as workload, 

and gives us the most data to use to train the Level-2 

SVMs.  These relationships were used to update the 

relationship graph.  After the relationships from each time 

window were processed, the edges in the Relationship 

Graph were used to generate a labeled training set. 

Examples were labeled as a true relationship if both nodes 

associated with an edge were the result of botnet 

communications. Likewise examples were labeled as 

unrelated if at least one of the nodes was the result of 

normal network traffic.  The same parameter selection, 

training, and test process that was used for the Level-1 

SVM in Section 5.3.1 was used for the Level-2 SVM. 

Figure 5 shows the performace of the Level-2 SVM.  The 

precision and recall results are very good, despite not 

having the benefit of the Level-1 SVM.   

5.5 2-Level Botnet Detection 
After training both SVMs, we were prepared to test the 

end-to-end system.  Each data set was processed by the 

system independently.  The goal of the system is to identify 

the botnet infected machines on the network.  To evaluate 

the performance of TLBD we measured the Accuracy and 

False Positive rate of the IP addresses report as being 

infected.  Accuracy is defined as the number of correctly 

classified IP address (true positives + true negatives) 

divided by the total number of IP address observed on the 

network.  The False Positive Rate (FPR) is defined as the 

number of false positives divided by the total number of IP 

address observed on the network. Precision and Recall 

were used to evaluate the individual SVMs because of their 

wide use in the machine learning community and we were 

evaluating the SVM based on the labeled training data at 

the individual relationship level.  We believe that Accuracy 



and False Positive Rate are more illustrative when 

evaluating the performance of the system as a whole. 

For comparison purposes, a single SVM was trained to 

identify individual NetFlow caused by botnets.  The 

following features were used by this SVM: 

1. Protocol 

2. Duration  

3. Number of Packets 

4. Number of Bytes 

5. Mean Bytes Per Packet 

The parameters were selected using the same process as 

described in Section 5.3.1.  This SVM was trained using 

the same training sets that were used to train TLBD. 

Figure 6 shows the Accuracy and False Positive Rate 

achieved by TLBD and the single SVM over time.  Note 

that the Left vertical axis shows the scale for Accuracy and 

the right vertical axis shows the scale for False Positive 

Rate.  The horizontal axis represents time in seconds from 

the beginning of the data set. 

Overall TLBD performed very well on all data sets.  We 

show the performance of TLBD over time, because we are 

monitoring the communication channels over time and 

expect the performance to improve as the TLBD collects 

more data.  In general, this hypothesis is supported by the 

Figure 6: 1 SVM and TLBD Accuracy and False Positive Rate on the 6 botnet data sets.  Accuracy is shown on the 

left vertical axis and False Positive Rate is shown on the right vertical axis. The horizontal axis shows time in 

seconds. 
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results.  It is important to note that the Accuracy and False 

Positive Rate curves are almost mirrors of each other. This 

shows that the False Positives are the main driver of errors 

in the system.  When we examined the data closely we 

found that the Level-2 SVM was able to reduce the Level-1 

false positives by an order of magnitude.  Even this 

improvement still produces a relatively larger number of 

false positives when compared to the number of actual 

botnet infected machines.  For example, in the HTTP-B 

data set, our technique correctly detected the 7 infected 

machines, but falsely reports 124 machines that were not 

infected.  Table 1 shows the number of false positives 

generated by TLBD and the single level SVM.  Both 

techniques successfully identified the botnet infect 

machines, but TLBD greatly reduced the number of falsely 

identified machines.  

These results support our hypotheses that NetFlow records 

alone are not sufficient for identifying botnet traffic from 

normal network traffic.  TLBD is able to overcome this by: 

1) Tracking communication channels over time 

2) Considering inter-flow and inter-channel 

relationships 

In all of the data sets a trend of very high detection 

accuracy, followed by a dip in performance, and then a 

gradual increase in performance was observed.  For 

example, consider the results from the HTTP-B data set 

depicted in Figure 6 B.  Accuracy is very high until around 

15,000 seconds at which point the accuracy starts to drop.  

This initial peak is due to the way the botnet and normal 

network data was combined.  The time of the botnet 

NetFlow records were adjusted to match the time frame of 

the normal network data. Initially, the number of botnet 

flows is similar to the number of normal network flows in 

the system, but as time progresses, the number of normal 

flows far outweigh the botnet flows, increasing the 

difficulty of the detection problem.  Then around time 

30,000 seconds the accuracy starts to improve.  This is due 

to the level-2 Relationship Graph maturing with additional 

information over time. 

TLBD was able to process the NetFlow records in near 

real-time.  To evaluate the runtime performance of our 

technique, we ran TLBD on a platform with a 2.5ghz Intel 

Core i7 with 8 GB of RAM.  On average, we were able to 

process the incoming NetFlow at 0.916x real-time using 4 

parallel relationship analyzers. Figure 7 shows the run-time 

performance on the individual data sets.  With modest code 

improvements or an increase in hardware capability, we are 

confident that TLBD could be used to process a real-time 

stream of NetFlow records from a large network.  There are 

multiple opportunities to parallelize level-2.  For example, 

the relationship graph update process is currently done 

serially and could be parallelized with modest 

improvements.  In addition, it would be trivial to update the 

relationship strengths is parallel.  

TLBD’s ability to process large amount of network data 

quickly can be attributed to it’s two level architecture. The 

first level acts as a filter, removing unlikely relationships 

from the data stream thus allowing TLBD to scale to large 

data sets.  As an example, the HTTP-B data set contained 

1,131,600 unique IP address but only 9,877 nodes were 

created in the relationship graph. 

6. Conclusion 

We introduced and evaluated a botnet detection scheme 

named TLBD (Two-Level Botnet Detector) that meets all 

of the 5 criteria enumerated for a botnet detector in Section 

1. TLBD identifies suspicious flows in the first level by 

tracking inter-flow relationships. In the second level of 

TLBD, the persistent inter-channel relationships for 

channels corresponding to the suspicious flows are tracked 

using a relationship graph to identify botnet C&C channels. 

Our experimental assessments, using real traffic flow data 

from a campus network, as collected by a edge router, 

superimposed with real botnet flow data, shows that TLBD 

identifies infected bots, with over 99.8% accuracy and with 

a false positive rate (FPR) of well under 1%.  Further, these 

bots are detected before the bots can launch an attack.  The 

real-time performance and the high accuracy rate with a 

low FPR are realized by using two sets of support vector 

machines (SVMs) organized in a two-level hierarchy.  Both 

SVM layers are trained on the traffic pattern of real botnet 

data, overlaid with normal traffic data.  TLBD does not 

require specific payload level data or specific IP addresses 

for the C&C servers.  These two features, respectively, 

permit TLBD to quickly adapt to new botnets and deal with 

botnets that use fast flux techniques to evade detection. The 

first level of the hierarchy uses one SVM for each known 

botnet and examines flow information collected within a 

short time window (with overlaps between consecutive 

short windows) to output potentially suspect flows but with 

a relatively high FPR.  Level 2 maintains a dynamic 

relationship graph that tracks the evolving relationships 

among communications channels and uses SVMs to 

identify botnet command and control channels.  The SVMs 

use both first (mean) and second order statistics (variance) 

Data Set  
Comp Time / 
Real-Time 

HTTP-A 0.743 

HTTP-B 1.077 

HTTP-C 0.683 

IRC-A 1.564 

IRC-B 0.664 

P2P-Storm 2.917 

Total 0.916 
Figure 7 TLBD run-time performance on botnet data 

sets 

 



of the flows identified by level 1 to identify both regular 

and random command and control channels over a large 

time interval.  The filtering done by the first layer SVMs 

keeps the computational and memory resources required by 

level 2 manageable, thus permitting the overall solution to 

have both high detection accuracy and a low FPR.  TLBD 

has significant internal parallelism with one SVM per 

botnet in each layer, each SVM with its internal, parallel 

analyzers for delivering responses in real-time. 

Our ongoing work is centered on refining TLBD to 

improve its real-time performance even further and on the 

use of ensemble-like organization to improve its overall 

capabilities. 
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